
--- ~, ,-It

"N ' -*'

1e o,
AD,24 823

< A' K-

Li 19:---

14 i- -GA :A E)-1,

f I o itT- l

"'A -P g ~Ax-

-i Q

i -Mq 9~ 10970

---n

A' V - I- 7-

i A P E 1:V

- - I.T J,~-~ -- '- ~ ~ ~ -

a7 ' ,7--'

Best
Available

copy

CONDIW IONS OF RELEASE
0104519303121

.............. oRIC U

COPYRIGHT (C)
1988
CONTROLLER
HMSO LONDON

............ ORIC Y

Reports quoted are not necessarily Avalloble to members of the public or to commercial
organisat~ans.

DEFENCE RESEARCH AGENCY, ELECTRONICS DIVISION

(RSRE, MALVERN)

Report 91014

Title: TDF: Specification of
Subset to Support
ANSI C, C++,
FORTRAN 77, [Accesion For
COBOL and Pascal [NTIS CRA&I

Authors: J M Foster U) 1:.o, C.,d 13

M Brandreth .
P W Core By
I F Currie [Jt, butio- I
N E Peeling Av:1ab,"y CI S

Date: ?ay 1991 Dist A a , 'or

Summary

TDF is an intermediate format for distributing software applications developed by
the United Kingdom's Defence Research Agency, Electronics Division at RSRE,
Malvem. Report no. 91005 gave an account ol' the whole of TDF. The present report
updates the account of the subset of TDF which supports ANSI C, C++, FORTRAN
77, COBOL and Pascal, described in 91005 as TDF Level 0.

The Introduction gives an overview of the L DF concept and sets the scene for the
Definition. This specifies each of the constncts which make up the subset of TDF
described here. A Glossary gives a quick explaration of some key TDF terms.

Copyright
©

Controller HMSO
1991

TDF: specification of subset to support ANSI C, C++ etc.

1 Introduction

1.1 TDF: Scenario of Use

1.2 TDF: Level of Definition

1.3 Values within a TDF System
1.3.1 Dynamic Values
1.3.2 Static Values
1.3.3 SORTs nd SHAPEs: an Example
1.3.4 SHAPE- and SORT-correctness

1.4 Identification of Values

1.5 Tokenisation

1.6 TDF Terminology
1.6.1 Specifying Translator Behaviour
1.6.2 Describing Program Construction

1.7 TDF: Architecture Neutrality
1.7.1 Architecture Neutral Memory Allocation through SHAPEs
1.7.2 Architecture Neutral Pointer Arithmetic

1.8 TDF CAPSULEs and Linking
1.8.1 The Content of CAPSULEs qnd the TDF Builder

2 Definition

2.1 SHAPE
2.1.1 Primitive SHAPEs
2.1.1.1 BOTTOM
2.1.1.2 TO?
2.1.1.3 BIT
2.1.1.4 PROC

2.1.2 SHAPE Constructors
2.1.2.1 INTEGER SHAPEs
2.12.1.1 Recommendations about Integer VARIETYs

2.1.2.2 Floatig Point SHAPEs
2.12.2.1 Recommendations about FLOATINGVARIETYs

2.1.2.3 POINTER SHAPEs
2.1.2.4 TUPLE SHAPEs

f TDF: specification of subset to support ANSI C, C++ etc.

2.1.2-5 PARAMPACK SHAPEs
2.1.2.6 UNION SHAPEs
2.1.2.7 OFFSET SHAPEs
2.1.2.8 NOF SHAPEs
2.1-2.9 SOME SHAPEs
2.1-2.10 ENV SHAPEs
2 .1.2.1 1 WAEL VALUE SHAPEs
2.1.2.12 Circular SHAPEs

2.2 EXP
2.2.1 Declarations and Naming
2.2.1.1 identify
2.2.1.2 variable
2.2.1.3 obtain-Jag
2.2.1.4 Binding: Discussion
2.2.2 Integers and Arithmetic
2.2.2.1 make Jnt
2.2.2.2 plus
2.2.2.3 minus
2.2.2.4 mult
2.2.2.5 Kinds of Division: Discussion
2.2.2.6 divi
2.2.2.7 div2
2.2.2.8 mod
2.2.2.9 rem2
22.2.10 exact~divide
2.2.2.11 negate
2272.12 abs
2.22.13 Number Conversion: Discussion
2.2. 1.14 change,.var
2.2.2 .15 shift Jeft
2.2.2 .16 shift fight
2.2.2 .1 7 round
2.2.2.18 truncate
2.2.2.19 bits-Jo-nteger
2.2.2.20 div reml
2.2.2.21 div....'em
2.2.2.22 Integer-test
2.2.2.23 integerjtest-i
2.2.2.24 iategerjoobits
2.2.2.25 Charact.,r Sets: Discussion

2.2.3 Floating Point Values
2.2.3.1 make-floating
2 .2.3.2ftoating-lus
227.3 .3 float, ngminus
2.2.3 .4 float hng jult
2.2.3.5 floating-iv

TDF: specification of subset to support ANSI C, C++ etc.

2.2.3 .6 floating-negate
2.2 .3.7 float
2.2.3.8 change~foating-.variety
2.2.3 .9 floating-lest
2.2.3 .10floating-test-i
2.2.4 POINTERS
2.2.4.1 POINTERs: Discussion
2.2 .4 .1.1 Sharing
2 .2 .4 .12 Null POINTERs
2.2.4.1.3 Original POINTERs
2.2.4.2 add-o-.ptr
22.4.3 subtract..fromir
2.2.4.4 ptrfield
2.2.4.5 ptr..unpad
2.2.4.6 assign
22.4.7 Initial Segments: Discussion
22.4.8 contents
22.4.9 coorce~pjlto-initial-segment
2.2.4 .10 avsign.-o-volatile
2.2.4.1 1 contents-.of-yolatile
2.2.4.12 move _some
2.2.4.13 pointerjtest
22.4 .14 pointerjtestj
22.4.15 subtract-ptr;
2.2.4.1 6 ptr-is-null
2.2.4.17 ptr..not_null
22.4 .18 Lifetimes: Discussion
2.2-5 Procedures
2.2.5.1 Procedures: Discussion
2.2.5.2 make-.proc
22.5.3 make-.null-proc
2.2.5.4procjis null
2.15.5 procjzotnull

2.2.5 .6 pro ceq
2.2.5.7 proc..neq,
2.2.5.8 proc-.eqji
2.2.5.9 apply..proc
2.2.5 .1 0 apply-.current -proc
2.2.5.1 1 return
2.2.5.12 currentenv
2.2.5.1 3 obtain-nl-toq
2.2.6 Program Structure and Flow of Control
2.2.6.1 sequence
2.2.6.2 Availability of L4BELs: Disciussion
2.2.6.3 Jumping with Values: Discussion
2.2.6.4 case
22.6.5 conditional{

TDF: specification ef subset to support ANSI C, C++ etc.

2.2.6.6 repeat
2.2.6.7 labelled
2.2.6.8 goto
2.2.6.9 make_labeLvalue
2.2.6.10 goto_iii
2.2.7 OFFSETs
2.2.7.1 array elemenLoffset
2.2.7.2 tuple..elemenLoffset
2.2.7.3 offset-Add
2.2.7.4 offset-subtract
2.2.735 offseLtmult
2.2.7.6 offseLdiv
2.2.7.7 offset-negate
2.2.7.8 offset~test
2.2.7.9 offset jestj
2.2.8 NORs and SOMEs
2.2.8.1 make-.nof
2.2.8.2 n-.copies

2.2.8.4 concatnof
2.2.8.5 and
2.2.8.6 or
2.2.8.7 xor
2.2.8.8 not
2.2.9 TUPLEs, PARAM PACKS and UNIONs
2.2.9.1 makejtuple
2.2.9.2 make-.param..pack
2.2.9.3 addtjojuple
2.2.9 .4 field
2.2.9.5 pad
2.2.9.6 unpad
2.2.10 Miscellaneous
2.2.10.1 make-value
2.2.10.2 clear -shape
2.2.10.3 make-string
2.2.10.4 exp..cond
2.2.10.5 Constants: Discussion
2.2.10.6 make-f'alse
2.2.10.7 make-frue

2.3 NAT

2.4 SIGNEDNA T
2.4.1 maxint
2.4.2 minint

2.5 VARIETY

TDF: specification of subset to support ANSI C, C++ etc.

2.5.1 variety cond

2.6 FLOATINGVARIETY
2.6.1 floatingvarietyjond

2.7 TAG

2.8 LABEL

2.9 NWEST

2.10 STRING

2.11 BOOL

2.12 ERRORTREATMENT
2.12.1 Impossible
2.12.2 Ignore

2.13 CAPSULE
2.13.1 make-capsule

2.14 TOKEXTERN
2.14.1 make .tok extern

2.15 TAGEXTERN
2.15.1 make tag extern

2.16 USAGE

2.17 UNIT
2.17.1 make-simple-unit
2.17.2 n'ake-comp unit
2.173 add-linkage

2.18 TOKDEC
2.18A1 make-tokdec

2.19 SORTNAME

2.20 TAGDEC
2.20.1 makeid-tagdec
2.20.2 make-var-tagdec

f TDF: specification of subset to support ANSI C, C++ etc.

2.21 TOKDEF
2.21.1 make tokdef

2.22 TAGDEF
2.22.1 nwke tagdef

2.23 TOKLINK
2.23.1 make toklink

2.24 TAGLINK
2.24.1 make taglink

2.25 TOKEN
2.25.1 apply_ token

3 Glossary

TDF: specification of subset to support ANSI C, C++ etc.

1 Introduction

1.1 TDF: Scenario of Use

TDF is an intermediate format for distributing software applications developed at
the United Kingdom's Def:nce Research Agenc;', Electronics Division at RSRE,
Malvern.

TDF can be produced from a very wide range of programming languages and
installed on a very wide range of architectures. The languages which TDF has been
designed to cater for include ANSI C, C++, FORTRAN 77, COBOL, Pascal, Ada,
Modula2, Common Lisp and Standard ML. This document describes a subset of TDF
for which prototype software exists which demonstrates its suitability for ANSI C.
The subset described in this document was also designed to support C--+,
FORTRAN 77, COBOL and Pascal.

TDF is defined in the form of a data-structure which is an abstract syntax for
programs. It contains sufficient information to allow efficient machine code to be
generated from it for a wide variety of computer architectures. A TDF data-structure
representing program is encoded into a linear stream of bits and residzs in a file. The
encoding of this stream of bits is both space efficient and extensible so as to allow
upwards compatibility for any future enhancements or amendments to the TDF
definition.

TDF can be used for distributing "shrink-wrapped" software. To do this, a software
vendor writes an application in a familiar programming language and then pioduces
from it a single version of the application in TDF. The software that produces the
TDF is called a TDF producer. The largest single component of the producer is likely
to be the program that converts a program written in a high-level language, such as
ANSI C, into TDF. We refer to this as the compiler component of the producer. Once
encoded, the TDF is then shipped to any of a number of target computers owned by a
software purchaser. The software that converts the encoded TDF into an executable
program on a target is referred to as a TDF installer. The largest single part of the
installer will be the program that generates machine code from arbitrary TDF
programs. We refer to this as a TDF translator.

1.2 TDF: Level of Definition

TDF constructs are generalisations of the constructs found in different programming
languages. They have been designed to satisfy the following requirements:

9 All the information that a programming language can represent which
helps a code generator produce efficient code should be representable in
TDF. This means that programs distributed in TDF can be as efficient as if
they were compiled with the best compiler on any target.

I1

[TDF: specification of subset to support ANSI C, C++ etc.

• Commonly provided hardware features should be easy to use - for
instance, the single instruction "array and bound check" provided by many
machines.

* As many optimisations as possible should be expressible as TDF to TDF
transformations, allowing these optimisations to be written portably. They
might be universal (i.e. beneficial for all languages and all target
machines), in which case they could be included in a general-purpose TDF
to TDF optimiser; they might be language specific, in which case they
could be included in any of the compiler components for that language; or
they might be specific to a class of architectures, in which case they could
be included in tran'slators for that class of target.

To satisfy these requirements, TDF has been designed as a wide-spectrum interface
which at its highest level generalises high-level programming languages, whilst at
its lowest level generalising assembler codes.

1.3 Values within a TDF System

Programming languages have always had the notion of static and dynamic values.
Static values were those known at compile-time whilst dynamic values were
calculated at run-time. The situation in TDF is similar. We will use the term
"static" to describe values known at translate-time and "dynamic" to describe values
which are calculated at run-time. (Note that in ANSI C the term "static" has a
different meaning.)

1.3.1 Dynamic Values

We will start by considering run-time values. It, programming languages, run-time
values tend to be classified by a type system. Types are used for three different
purposes in programming languages. Firstly, they help the programmer to model data
in as natural a way as possible by providing a system of convenient data-structures -
records, arrays etc. Secondly, they allow many structural programming errors to be
detected at compile-time. Lastly, they provide information o a compiler which
helps it to generate efficient machine-code.

The TDF rnalogues of types are SHAPEs. They serve only the last of the three
purposes described above - providing the information which translators need in order
to achieve efficient memory management for any programming language on target
architectures. SHAPEs are therefore designed to provide an architecture neutral
abstraction of memory management making no assumptions about the properties of
targets (wtrd length, alignment constraints etc.).

2

MA 61-.-

TDF: specification of subset to support ANSI C, C++ etc.

1.3.2 Static Values

Apart from run-time values, there is another set of values in this TDF definition.
These are the pieces of TDF program themselves, which are output by compilers.
These TDF values are classified into their own system of categories which we refer
to as SORTs. SORTs are analogous to the syntactic classes found in high level
programming languages - identifiers, expressions, types etc. For instance, SHAPE is
one of the SORTs.

All pieces of TDF program, whatever SORT they are, are by definition static (ie.
known at translate-time). Values generated by program, whatever SHAPE they are,
are in general dynamic (ie. known only at run-time). However, it may sometimes be
possible to evaluate run-time expressions at translate-time, in which case they are
static after all and may offer opportunities for optimisation.

1.3.3 SORTs and SHAPEs: an Example

The treatment of integers provides a good example of the relation berveen SORTs
and SHAPEs. Pieces of TDF program which, when evaluated at run-time will
generate values, are of SORT EXP. (EXP stands for 'expression'.) Each EXP can be
characterised by the SHAPE of the value which it will generate. For instance, an
EXP which will generate an integer value is said to have INTEGER SHAPE.
Values of this SHAPE can describe any run-time integer - eg. a dynamically
calculated index of an array.

Pieces of program which by contrast stand for integers known at translate-time are
of SORT NAT. (NAT stands for 'natural number'.) They are not EXPs which have to
be evaluated in order to generate their integer values. Instead, they already are integer
values. A piece of TDF program of SORT NAT can describe any compile-time
known integer - eg. a statically calculated bound for trimming an array.

1.3.4 SHAPE- and SORT-correctness

TDF relies on the programming language compiler to determine to what extent the
SHAPE-correctness of programs is enforced. (An example of SHAPE-incorrectness
is the multiplication of two POINTERs.) Compilers from strongly typed languages
will naturally produce SHAPE-correct programs.

Likewise, the SORT-correctness of the TDF produced by a compiler is dependent on
the correctness of the compiler implementation. Neither SORT-correctness nor
SHAPE-correctness need be checked by a TDF translator.

3i

FTDF: specification of subset to support ANSI C, C++ etc.

1.4 Identification of Values

TDF provides two different methods of identifying values by names, one static and
one dynamic. Identifiers which statically identify' pieces of TDF program are called
TOKENs. They loosely correspond to ANSI C's parameterised macros but are a
great deal more powerful. Identifiers in TDF program that dynamically identify
run-time values are of SORT TAG. These identifiers correspond to the names of
variables and procedures in progrmming languages such as ANSI C.

TDF identifiers, be they TAGs or TOKENs, do nothing more than set up name/value
correspondence. All the syntactic "sugar" associated with identifiers in
programming languages - the use of mnemonic identifiers, the complexities of
overloading and hiding - is provided solely to aid the human readability of programs.
It provides no information which assists in the production of efficient machine code
and hence has no relevance to TDF. All such syntactic "sugar" is eliminated by
compilers to TDF.

TAGs correspond to identifiers in programming languages. But TOKENs are a
concept devised specifically to handle the issues that arise when software is
distributed via an ANDF, as opposed to being compiled and translated on a single
machine. They are addressed in the following section.

1.5 Tokenisation

When a TOKEN is used to stand for a piece of TDF program, that piece of program
is said to have been "tokenised". A TOKEN identifies a (possibly parameterised)
piece of program which can be of any SORT. Significantly, the definition of the
TOKEN - in procedure or macro terms, its body - can be supplied at a number of
different times in the production or installation process:

* It might be supplied Ly the producer and bound together with the program
to which it relates, in which case that definition will be distributed
identically to all targets. A typical usage would be to make a commonly
occurring piece of program the subject of a token definition in order to
compress the size of the distributed TDF. The substitution of the definition
for the TOKEN will be performed hv the installer.

• The definition might be supplied by the installer. There are two
variations of this:

- a piece of program might be used so frequently that its
definition is known by all installers. This is a similar usage to
the one above but eliminates the need to distribute the TOKEN's
definition, which compresses the TDF even more.

St;)e piece of program to be substituted for the TOKEN might be
target specific - e.g. the datastructure used by a print procedure.

4

TDF: specification of subset to support ANSI C, C++ etc.

o The TOKEN may be recognised by the translator and implemented
directly - ie. not actually considered to stand for a piece of TDF program
at all. There are a number of uses for this approach:

A TOKEN might be used to represent an operation such as
vector inner product. A producer might supply an architecture
neutral definition of the TOKEN. But an installer on a machine
s' :h as a CRAY might choose to ignore the portable definition
and make full use of the CRAY's parallelism in implementing
the vector inner product.

• A TOKEN might be used to represent an operation that was
implemented by many architectures, but not by all. (IEEE
floating point operations are an example of this.) Because TDF
is an architecture neutral representation of program, it cannot
provide constructs describing such operations - that would make
it impossible to implement fully on certain architectures. Useful
but non-universal operations could nonetheless be accessed by
using TOKENs to stand for them. Program making use of such
TOKENs would of course be translatable only on architectures
which provided the required operations.

- If a new language were invented requiring a new feature to be
added to TDF, it could be defined as a TOKEN, which installers
implemented according to its definition.

* The TOKEN might be bound during linking to an external function that
has been precompiled from a programming language, or directly written in
assembler. The mechanism for doing this is defined as part of the
installation process.

Some of these uses of TOKENs require installers to know the TOKENs' meanings.
Installer writers will therefore need to refer to a list of such TOKENs and meanings
as well as to this Specification when writing their installers.

1.6 TDF Terminology

Before going further, we need to explain some of the terminology and notation used
later on in this document. Firstly, we will define the terms used to specify the
behaviour of TDF translators: and then we will introduce the conventions used to
describe TDF program constructs.

i5

TDF: specification of subset to support ANSI C, C++ etc.

1.6.1 Specifying Translator Behaviour

In this document the behaviour of TDF translators is described in a precise manner.
Certain words are used with very specific meanings. These are:

* "undefined": means that translators can perform any action, including
refusing to translate the program. It can produce code with any effect,
meaningful or meaningless.

* "shall": when the phrase "P shall be done" (or similar phrases involving
"shall") is used, every translator must perform P.

* "should": when the phrase "P should be done" (or similar phrase
involving "should") is used, translators are advised to perform P, and
compiler writers may assume it will be done if possible. This usage
generally relates to optimisations which are recommended.

* "will": when the phrase "P will be true" (or similar phrases involving
"will") is used to describe the composition of a TDF construct, the
translator may assume that P holds without having to check it. If, in fact, a
compiler has produced TDF for which P does not hold, the effect is
undefined.

o "target-defined": means that behaviour will be defined, but that it varies
from one target machine to another. Each target translator shall define
everything which is said to be "target-defined".

1.6.2 Describing Program Construction

As mentioned in § 1. 1, the linear stream of bits which constitutes a TDF program
encodes the abstract syntax tree of that program. As may be imagined, the encoded
form of TDF is not a convenient medium for describing the structure of TDF
program to the human reader! So in this document we talk in terms of the abstract
syntax tree: but before we do this, we need to state the notation which we are going
to use.

§ 1.3.2 explained that pieces of TDF program are categorised into different SORTs,
analogous to the syntactic classes of high-level programming languages. Some
SORTs consist of a fixed number of named alternatives. To indicate a particular
alternative, we simply write its name. For instance, the two alternatives for the
SORT BOOL apear as:

true

false

6

TDF: specification of subset to support ANSI C, C++ etc.

Other SORTs consist simply of integers or a subset of integers which can be written
down in the usual way, eg. a NAT:

3

Certain SORTs can consist of a tuple of components (ie. they are Cartesian products
of other SORTs). To write these down we list their components. For instance, a
VARIETY may consist of a pair of SIGNEDNATs:

(0,255)

The SORTs EXP and SHAPE are recursively defined, with a considerably richer set
of primitives and constructs than the other SORTs have.

In text, the names of EXP constructs will appear in lower case italics.

Primitive EXPs - ie. EXPs which do not require arguments - are simply named, as
in:

maketop

The application of an EXP construct is denoted as follows:

goto (2,
mnaketop

)

As with EXPs, primitive SHAPEs are simply named, as in:

PROC

And the application of a SHAPE construct is denoted as follows:

POINTER(PROC)

In text, the names of SHAPE constructs will appear in upper case. (The reader may
already have noticed that the names of the SORTs also appear in upper case - as
does the word SORT.)

Since the SHAPEs of values produced when EXPs are evaluated are important, we
generally state the SHAPE when specifying TDF constructs. For instance, an EXP
which evaluates to produce a value of SHAPE PROC is described as an EXP PROC.
TAGs, which name run-time values, and LABELs which identify pieces of program
expecting run-time values to be supplied to them, are likewise qualified.

7

TDF: specification of subset to support ANSI C, C++ etc.

The following example, which specifies the construct truncate, shows how the EXP and
SHAPE notations look in practice:

truncate
overr: ERROR_TREATMENT,
v: VARIETY,
arg: EXP FLOAT(F)

-> EXP INTEGER(v)

The construct's arguments (three in this case) precede the "->" and the result follows
it. Each argument is shown as follows:

name: SORT

The name standing before the colon is for use in any English description which may
accompany the notation and for cross-referencing within the notation. It has no other
significance.

The example given above indicates that truncate takes three arguments. The first
argument, ov-err, is of SORT ERRORTREATMENT. The second, v, is of SORT
VARIETY. The third argument, arg, is an expression of SORT EXP, and as
mentioned before we append the SHAPE of the EXP, FLOAT(F). arg is the piece of
program which will deliver the floating point number to be truncated.

After the "->" comes the SORT of the result of truncate. The result is an EXP
INTEGER(v) - a piece of program which, when evaluated, will deliver a value
whose SHAPE is INTEGER(v), the truncated floating point number. The "v" is an
example of cross-referencing within the specification of a construct.

Section § 1.3.4 stated that SHAPE-correctness need not be checked by a TDF
translator. If constructs are formed with EXP arguments whose SHAPEs deviate
from those prescribed in this document, the effect is undefined.

The format for the description of the construction of a SHAPE is similar to that for
EXPs. For instance, the SHAPE construct SOME:

SOME

s:SHAPE

-> SHAPE

takes one SHAPE argument, which for the purposes of any accompanying
English text is named s, and yields a SHAPE result.

8

V TDF: specification of subset to support ANSI C, C++ etc.

Four further conventions are needed in order to describe TDF constructs. Some
constructs may take a variable number of arguments. For instance, sequence may take
any number of components greater than zero. We write this as:

li=l n EXP Y,

The symbol "1" indicates a cartesian product; i ranges from I to n; and the EXP Yi are
the components. In addition it is sometimes necessary to add qualifying predicates,
which we enclose in curly brackets, as in:

lni=InEXPYi (n>O}

Some constructs have arguments which may optionally be omitted. To indicate this
in the definition of the construct, we enclose the SORT of the optional argument in
brackets and apply a postfix _OPTION, e.g.

(BOOL)_OPTION

meaning either a BOOL or nothing.

The absence of an optional argument in the application of a construct is denoted by
leaving a blank space where the argument would have been - eg.:

make tokdef(74,

make int((0,255),65)
)

The second argument has been omitted here.

With an understqnding of the notation used to describe TDF and the meaning of the
terms used to describe translator behaviour, we can now look at how TDF achieves
its complete architecture neutrality with the help of some examples.

1.7 TDF: Architecture Neutrality

The achievement of complete architecture neutrality has been the first priority in
designing TDF. The slightest shortfall from this goal would seriously undermine its
usefulness as a software distribution format. This section explains how TDF allows
target-dependent features of programming languages to be completely factored out
of producers and dealt with exclusively in each architecture's installer.

This complete separation of concerns means that a producer can be used to produce
TDF for installation on any architecture with no alteration whatsoever.

9

II..I I II

TDF: specification of subset to support ANSI C, C++ etc.

1.7.1 Architecture Neutral Memory Allocation through SHAPEs

The design of SHAPE constructs which provide a totally symbolic description of the
representation of run-time values is a central issue in the design of TDF and so
merits a detailed explanation in this section.

The following example provides an illustration. Values of the C type:

struct(unsigned char c; double f;)

will typically be given the TDF SHAPE:

TUPLE(INTEGER(0, 255), FLOAT(2, 56,0, 8))

when compiled to TDF. (TUPLE is TDF's SHAPE construct describing cartesian
products, INTEGER describes integers, and FLOAT describes floating point
numbers.)

The TUPLE SHAPE shown above is a straightforward mapping of the C type,
preserving the information that it is a 'struct'. When compiling in an architecture
neutral fashion one cannot afford to throw away this information. The reason for this
is that different architectures have different alignment rules. Without the knowledge
that one was dealing with a 'struct', correct and efficient translation to machine
code in this case would be impossible. For example, on a machine which placed no
restriction on accessing words or floating point numbers at odd byte boundaries, one
could compactly represent this structure in 9 bytes - 1 for the 'char' and 8 for the
'double'; a less liberal one which favoured word addressing might need 3 bytes of
padding after the 'char', so requiring 12 bytes in total; and a really illiberal one
might require 16 bytes by insisting that 'doubles' start on 8-byte boundaries.

Clearly, it is no use simply specifying the number of bytes required for storing the
'struct', since this will vary from architecture to architecture. What is required, and
what TDF offers, is the ability to give all the information about the 'struct' which is
necessary for individual architectures' optimum space allocations to be determined.

Besides TUPLE, other SHAPE constructs cover integers, floating point numbers,
procedures, pointers, unions, static and dynamic arrays and so on in a similarly
architecture neutral fashion.

But as well as providing SHAPEs which allow translate-time memory management
to be described in an architecture neutral fashion, TDF needs to rrovide support for
the manipulation of target-dependent offset information at run-time, as exemplified by
C's pointer arithmetic.

It does this using the SHAPE construct OFFSET.

L 10

TDF: specification of subset to support ANSI C, C++ etc.

1.7.2 Architecture Neutral Pointer Arithmetic

The SHAPE construct OFFSET is needed in order to achieve completely
architecture neutral pointer arithmetic. Addition to a pointer, p, to an array of values of
SHAPE X to obtain a pointer to the array's third value provides an example:

addto..pr(p,
offset mult(array elementoffset(X),

make int((O,255),2)
)

)

arrayelemrnent offset takes the SHAPE X and calculates the distance between
successive elements in an array of values of SHAPE X. The SHAPE of the value
which it delivers is OFFSET(X,X), meaning that it measures the offset between a
value of SHAPE X and another value of SHAPE X. offset mult multiplies the
OFFSET(X,X) by 2 to produce another OFFSET(XX) value, add _o_ptr then adds that
OFFSET(X,X) to the pointer, p, to produce a new pointer which points to the third
element of the array pointed to by p.

TDF's OFFSETs allow the inherently target-dependent business of pointer
arithmetic to be described in an taiget-independent way. Some OFFSET
calculations can be performed at install-time, while others have of necessity to wait
until run-time. But in each case, the calculations are performed when knowledge of
the target's characteristics is available.

.1.8 TDF CAPSULEs and Linking

Architecture neutral memory allocation and pointer arithmetic are important
aspects of target neutrality. But in order to complete the "shrink-wrapped" software
scenario, it also necessary for the software distribution medium to be able to
accommodate the linkage of target-independent software with target-dependent
software.

In the conventional scenario, application software is linked with target-dependent
libraries on the developer's hard,are, compiled, and then distributed -necessqrily
only to the architecture to which the target-dependent libraries related. Compilation
and linkage take place on the developer's hardware: all that happens on the user's
hardware is that the application runs.

But in the "shrink-wrapped" scenario, linking to target-dependent software before
distribution is inadmissible. Instead, this linking must be carried out on the target.
As a medium for "shrink-wrapped" software distribution, TDF has been designed to
express the information needed to achieve this linking on the target. (In fact, as will
be seen, TDF'; approach to linking is completely general, and permits linking

11

F"
TDF: specification of subset to support ANSI C, C++ etc.

between any combination of target-independent and target-dependent software on
either the developer's or the user's hardware.)

Separate pieces of TDF program are called CAPSULEs. In the following section we
explain hcw CAPSULEs express the necessary linking information and how linking
is perfore.cd on the target.

1.8.1 The Content of CAPSULEs and the TDF Builder

TDF CAPSILEs will normally reside in separate file. in the host operating system.
Inside the file will be the linear stream of bits referred 4o in § 1.1, encoding the
CAPSULE'c contents.

A CAPSULE contains the definitions of a number -11 TAGs and TOKENs. When it is
translated to machine code and the code is loaded, the values associated with a
CAPSULE's TAG.S will be made available to the system linker in the usual way.
Before giving the definitions of its TAGs and TOKENs, r. CAPSULE will provide
declarations of them: these indicate the SHAPEs of the TAGs and the SORTs of the
TOKENs. The declarations precede the definitions in order to allow for recursive
definitions.

TDF permits pieces of program which are incomplete -probably because they lack
some target-dependent component - to be d;strituted to target machines. Being
incomplete, such CAPSULEs cannot be translated straightaway. For instance, t.
distributed CAPSULE might use a TOKEN which stands for the SHAPE
corresponding to the ANSI C type "FILE". The target-independent CA.'SULE
cannot itself provid, 'he definition of that TOKEN because the definition is
target-dependent. It ..,erefore needs to be merged with a local, target-dependent
CAPSULE which dues contain the TOKEN's definition before the TDF can be
understood by an inwtaller and translated.

This merging process is carried out by a program written specially to support TDF,
known as the TDF Builder. Before we investigate the action of the TDF Builder, we
need to look at the contents of CAPSULEs in a little more detail.

Strings provide the naming information with system linkers need in order to match
up the values which separate pieces of code make available or use. The TDF
Builder also uses strings to match up values and program fragments made available
or used by CAPSULEs when it merges them before translation. Inside CAPSULEs,
however, values and prog,-.m fragments are identified not by sings but by TAGs
and TOKENs. And so in order to make them accessible to the TDF Builder and to
system linkers, a CAPSULE associates strings with those of its TAGs and TOKENs
which are to be the subject of building or linking. As well as associating strings with
TAGs and TOKENs, CAPSULEs give some additional information about the TAGs
and TOKENs: they indicate wheth-.r or not the TAG or TOKEN is declared, defined
or used in the CAPSULE.

12

TDF: specification of subset to support ANSI C, C++ etc.

The TDF Builder's task is not just a matter or extracting all the declarations,
definitions and string associations from its argument CAPSULEs and throwing them
all together to construct a new, bigger CAPSULE: it may have to reconcile the
different TAGs and TOKENs which the argument CAPSULEs have used to name
the same things. For instance, one CAPSULE may give a definition for the TOKEN
67 and associate it with the string "clibjfile" while another uses the TOKEN 102
and associates it with the string "clib.file". Both CAPSULEs are talking about the
same thing, but since they were produced independently they quite naturally call it
by different names - TOKENs - locally. To resolve this clash, the TDF Builder
associates a renaming with each CAPSULE's set of declarations and definitions. In
this case, it might add 67->135 to the first CAPSULE's set and 102->135 to the
second CAPSULE's set.

In summary, then, we have seen that a CAPSULE contains a set of declarations and
definitions of TAGs and TOKENs. It associates strings with some of the TAGs and
TOKENs, for the benefit of system linkers and the TDF Builder. It gives information
as to whether each of these TAGs and TOKENs is declared, defined and used in the
CAPSULE. A composite CAPSULE which has been put together by the TDF
Builder may contain internal renamings in order to resolve disagreements between
the sets of declarations and definitions which came from different CAPSULEs.

A CAPSULE which is capable of being translated will not necessarily give
definitions for all the TAGs and TOKENs referred to by the code which it contains.
Values corresponding to TAGs whose definitions it does not provide will have to be
linked in by the system linker after translation: and fragments of program
corresponding to TOKENs whose definitions it does not provide will have to be
known by the installer (as explained in §1.5).

(The TDF Builder has been presented as being used purely to merge
target-independent CAPSULEs with target-independent ones. In fact, it could be
employed to merge any combination of target-independent and target-dependent
CAPSULEs since it is completely indifferent to the origin and status of the
CAPSULEs which it processes.)

13

_4

TDF: specification of subset to support ANSI C, C++ etc.

2 Definition

Having set the scene by describing the top-level structure of a TDF CAPSULE, we
are now in a position to look at the finer detail of TDF. This involves giving an
account of all the TDF SORTs and the constructs which can create them. Each of
the SORTs is described in turn, beginning with those which equate most easily to
the syntactic classes of high-level programming language - eg. types, expressions
etc. In fact, SHAPE and EXP - the TDF SORTs which correspond to these - are the
richest SORTs and the descriptions of them occupy the greater part of this
document.

There are 25 SORTs:

SHAPE FLOATINGVARIETY BOOL USAGE TOKDEF
EXP TAG ERRORTREATMENT UNIT TAGDEF
NAT LABEL CAPSULE TOKDEC TOKLINK
SIGNEDNAT NTEST TOKEXTERN SORTNAME TAGLINK
VARIETY STRING TAGEXTERN TAGDEC TOKEN

2.1 SHAPE

SHAPEs give TDF translators symbolic size and representation information about
run-time values. Values of the same SHAPE will be represented in the same way
and occupy the same amount of memory at run-time on a given architecture.

The construction of SHAPEs is recursive and is built up from a set of primitive SHAPEs
which describe values such as bits and procedures, and SHAPE constructors for
describing values such as tuples, arrays (both statically and dynamically sized),
pointers and unions.

2.1.1 Primitive SHAPEs

There are four primitive SHAPEs.

2.1.1.1 BOTTOM

BOTTOM is the SHAPE which describes pieces of program which do not return any
result. Examples include goto and return.

2.1.1.2 TOP

TOP is the SHAPE which describes pieces of program which return no useful value.
assign is an example: it performs an assignment, but does not deliver any useful
value.

14

TDF: specification of subset to support ANSI C, C++ etc.

2.1.1.3 BIT

BIT is the SHAPE which describes values which have only two possible conditions -
true or false.

2.1.1.4 PROC

PROC is the SHAPE which describes procedure values.

2.1.2 SHAPE Constructors

Compound SHAPEs are SHAPEs which are not primitive. They are created by
SHAPE constructors which take arguments.

2.1.2.1 INTEGER SHAPEs

Most integer arithmetic operations -plus, minus etc. - work in the same way on
different kinds of integer. But on most architectures if the operation is dyadic, the
arguments must be of the same kind and the result will also be of that kind.

The different kinds of integer are dist;*-guished by having different VARIETYs. (The
SORT VARIETY was introduced in §2.5.) SHAPEs describing integers are
constructed by the SHAPE construct INTEGER, taking a value of SORT VARIETY
as its argument:

variety: VARIETY

-> SHAPE

Thus:

INTEGER(0,255)

is a SHAPE describing an integer value whose VARIETY is (0,255),
specifying that it may lie between 0 and 255 inclusive, and for which a translator
can accordingly plan space.

15

V- TDF: specification of subset to support ANSI C, C++ etc.

Most architectures require that dyadic integer arithmetic operations take arguments
of the same size, and so TDF does likewise. Because TDF is completely
architecture neutral and makes no assumptions about word length, this means that
the VARIETYs of the two arguments must be the same. An example illustrates this.
A piece of TDF which attempted to add two values whose SHAPEs were:

INTEGER(0,60000) and INTEGER(0,30000)

would be undefined. The reason is that without knowledge of the target
architecture's word length, it is impossible to guarantee that the two values are
going to be represented in the same number of words: on a 16-bit machine these two
would, but on a 15-bit machine they would not. The only way to be sure that two
INTEGERs are going to be represented in the same number of words on all
architectures is to stipulate that their VARIETYs must be eractly the same.

When any construct delivering an INTEGER of a given VARIETY produces a result
which is not reprcsentable in the space which an installer has chosen to represent
that VARIETY, an integer overflow error occurs. Whether this occurs in particular
circumstances is target-defined, because installers' decisions on representation are
inherently target-defined. Thus the calculation of 200+250, where both values are of
SHAPE INTEGER(0,255) may or may not cause an overflow depending on how the
installer represents INTEGER(0,255)'s. If it uses only 8 bits, an overflow will occur:
if it uses 16, there will be no overflow.

2.1.2.1.1 Recommendations about Integer VARIETYs

Two recommendations are made about the use of integer VARIETYs.

e First recommendation: the SIGNEDNATs delimiting VARIETY
should reflect as precisely as possible what is needed by the program. This
choice should not be influenced by knowledge of what is available on
common machines (except where the purpose is specifically to take
advantage of such knowledge). It is the task of the TDF translator to make
intelligent decisions.

* Second recommendation: where possible, VARIETYs should be
tokenised in such a way that useful selective alterations may be made
when a program reaches the target machine. It may be that certain
operations involving integers can usefully be transformed to make
optimum use of an architecture's facilities. So that the relevant integer
VAREETYs can be substituted selectively, the integer arguments to these
operations should belong to a particular tokenised VARIETY, and other
integers to another VARIETY.

16

TDF: specification of subset to support ANSI C, C++ etc.

2.1.2.2 Floating Point SHAPEs

Most of the floating point arithmetic operations,floating_plus, floating-minus etc., are
defined to work in the same way on different kinds of floating point number. If these
operations have more than one argument, the arguments have to be of the same kind,
and the result is also of this kind.

The different kinds of floating point number are called FLOATINGVARIETYs.
(FLOATINGVARIETYs were introduced in §2.6.) SHAPEs describing floating
point values are constructed by the SHAPE construct FLOATING, taking a value of
SORT FLOATINGVARIETY as its argument:

fv: FLOATINGVARIETY

-> SHAPE

Thus:

FLOATING(10,30,-5,15)

is the SHAPE of a floating point value of FLOATING-VARIETY
(10,30,-5,15). This signifies that its BASE is 10, it has 30 digits in its MANTISSA,
its MINIMUM-EXPONENT is -5 and its MAXIMUM-EXPONENT is 15.

BASE is the base with respect to which the remaining numbers are given.

MANTISSADIGITS is the required number of BASE digits, q, such that any number
with q BASE digits can be rounded into a floating point number of the variety and
back again without any change to the q BASE digits.

MINIMUMEXPONENT is the required integer, n, such that BASE raised to the
power n can be represented as a non-zero floating point number.

MAXIMUMEXPONENT is the required integer such that BASE raised to that
power is representable as a floating point number of the variety.

The BASE specified need bear no relation to the base for floating point numbers in
any target architecture. For instance, the BASE may be 10, while the
implementation may be binary.

The use, of a FLOATINGVARIETY in TDF expresses the intention that a correct
program will only use the values implied by the requirements. A TDF translator is
required to make available a representation such that, if only values within the
requirements are produced, no overflow error will occur. The effect of using values
outside the requirements is undefined, but an overflow error may be produced.

Any number of FLOATINGQVARIETYs may be asked for by a TDF program,

17

TDF: specification of subset to support ANSI C, C++ etc.

though it is recommended that the number should be severely limited. The space
taken in he TDF for transmission of FLOATING-VARIETYs should be minimised
by tokenising (§1.5) the required FLOATINGVARIETYs and using the TOKENs
instead of the full form.

2.1.2.2.1 Recommendations about FLOATING VARIETYs

Two recommendations are made about the use of FLOATING_VARIETYs in TDF.

* First recommendation: when arguments are chosen to define a
FLOATING-VARIETY their values should reflect as precisely as
possible what is needed by the program. This choice should not be
influenced by knowledge of what is available on common machines. It is
the task of the TDF translator to make intelligent decisions.

* Second recommendation: FLOATINGVARIETYs should be tokenised
in such a way that useful selective alterations may be made purely in the
target machine. It may be that a certain operations involving floating point
values can usefully be transformed to make best use of an architecture's
facilities. So that the relevant floating point VARIETYs can be
selectively substituted, the floating point arguments to these operations
should belong to a particular tokenised FLOATINGVARIETY, and other
floating point values to another FLOATINGVARIETY.

2.1.2.3 POINTER SHAPEs

A POINTER is a value wh'ch points to a space allocated in the computer's memory.
The POINTER constructor takes a SHAPE argument:

arg: SHAPE

-> SHAPE

The argument SHAPE describes the val.ue t which the pointcr points. It will not be
TOP. Eg.:

POINTER(INTEGER(0,255))

The provision of an argument SHAPE gives TDF translators the freedom to
implement POINTERs in different ways depending on the SI-,APE of the values to
which they point. Otherwise the rule that values with equal SHAPEs have the same
representation on any given architecture would prevent this.

The lifetime of an POINTER depends on the manner of its creation. If it arises from

18

TDF: specification of subset to support ANSI C, C++ etc.

a variable construct, its lifetime extends over the body of that construct. If it arises
from explicit use of a library routine, its lifetime depends on the content of the
library routine.

There shall be an upper bound to the size of representation of POINTERs. This is

important in the construction of circular SHAPEs (§2.1 2.12).

2.1.2.4 TUPLE SHAPEs

The SHAPE constructor TUPLE describes cartesian products. It takes a variable
number of SHAPE arguments:

components:ni=l n (si:SHAPE) (n >= 0)

-> SHAPE

None of the components will be TOP.

Translators shall represent the component values ot . TUPLE value in memory in
the same order as they occur in the TUPLE construct. Furthermore, the
representation of the first n fields of a TUPLE shall be unaltered by adding an
additional field at the end. This requirement satisfies C++'s need for pointers to be
able to access different subsets of the same TUPLE value.

2.1.2.5 PARAM PACK SHAPEs

The SHAPE constructor PARAMPACK describes collections of one or
more values gathered together for supplying as parameters to a
procedure:

components:ni=l1
n (si:SHAPE) { n >= 0)

-> SHAPE

Some architectures require that procedure parameters be laid out in a special way,
differently from (say) TUPLEs. In order to maintain architecture neutrality, TDF
reflects this requirement by providing PARAM_PACK. TDF PROCs always take
one argument, which will be of SHAPE PARAMPACK(..).

All the operations applicable to TUPLEs are applicable to PARAM_PACKs.

19

"- TDF: specification of subset to support ANSI C, C++ etc.

2.1.2.6 UNION SHAPEs

The UNION SHAPE constructor describes values which may take one of a number
of SHAPEs:

alternatives: ii= n (si:SHAPE) (n >0

-> SHAPE

None of the alternatives will be TOP. A discriminant to determine which alternative
is present is not a part of the value. If it is needed, such discrimination must be
performed elsewhere.

2.1.2.7 OFFSET SHAPEs

The SHAPE constructor OFFSET describes values which measure offsets in
memory. (It should be emphasised that these are in general run-time values).

OFFSET takes two SHAPE arguments in order to allow OFFSETs to and from
different SHAPEs to be represented differently. Thi gives installer writers the
latitude necessary to deal with complex memory layouts:

shl: SHAPE

sh2: SHAPE

-> SHAPE

An OFFSET (X,Y) measures the offset between a value of SHAPE X and a value of
SHAPE Y in a datastructure.

2.1.2.8 NOF SHAPEs

The NOF SHAPE constructor describes arrays of values whose size is known at
translate-time:

s: SHAPE,
n: NAT

-> SHAPE

s gives the SHAPE of the consti.jent elements of the array, and n says how many there
are. The SHAPE s will not be TOP.

20

TDF: specification of subset to support ANSI C, C++ etc.

2.1.2.9 SOME SHAPEs

The SOME SHAPE constructor describes arrays of values whose size is not known
at translate-time:

s: SHAPE

-> SHAPE

SOME SHAPEs are not on the same footing as the other SHAPEs. Since the size of
values of SHAPE SOME(X) is not determinable at translate-time, they cannot be
accommodated in a procedure's workspace. Nor can any compound value which
contains a SOME(X), and whose size depends on the size of that SOME(X). The
only SHAPE construct which breaks this dependency is POINTER. It does so
because POINTERs are defined to have the same size regardless of the size of the
array to which they point: translators shall implement POINTER(SOME(X))'s in
the same size no matter how many X's there are.

SHAPEs whose size does not depend on the size of a constituent SOME(X) are
known as "SOME-free". For example,

UNION(INTEGER(V),
FLOAT(F)

and

[TUPLE(NOF(POINTER(SOME(PROC))),

INTEGER(V)

are SOME-free, whereas

TUPLE (NOF(SOME(PROC)),
INTEGER(V)

is not.

Certain TDF constructs stipulate that the SHAPE of an argument EXP will be

SOME-free. These stipulations work together to ensure that no TDF program will
attempt to introduce a value whose size is not determinable at translate-time into a
procedure's workspace.

21

TDF: specification of subset to support ANSI C, C++ etc.

2.1.2.10 ENV SHAPEs

The ENV SHAPE constructor describes values which give access to the local values
namd and the LABELs visible in the course of a particular procedure application.
An EXP construct (obtain nLtag) is provided which takes an ENV argument and
extracts a named value from the procedure application to which the ENV relates.
Another construct (goto_no takes a number of arguments, including an ENV and a
LABELYVALUE, and passes control to the relevant LABEL in the procedure
application concerned.

The ENV constructor takes a TAG argument:

t: TAG

-> SHAPE

t identifies the ENV as relating to an application of the procedure named t in the
enclosing CAPSULE. The reason for the TAG argument is that without knowing
which procedure an ENV related to, it would be impossible at translate-time to
output the code necessary to extract the procedure's local values or jump to one of
its locations.

2.1.2.11 LABEL-VALUE SHAPEs

The LABELVALUE SHAPE constructor describes values which enable non-local
or "long" jumps from one procedure to another.

There is one constructor, which takes a SHAPE argument:

sh: SHAPE

-> SHAPE

sh is the SHAPE of the value which will be passed when the LABEL.VALUE is
used to perform a jump.

2.1.2.12 Circular SHAPEs

Circular SHAPEs can be constructed using TOKENs. The following TOKDEF
provides an example: it defines "X" to be the SHAPE of a list of INTEGER(V)'s.

make.tokdef(X,

TUPLE(INTEGER(V), POINTER(X))
)

There will be a POINTER in the cycle. This, together with the fact that there is an

22

TDF: specification of subset to support ANSI C, C++ etc.

upper bound on the size of representation of POINTERs, means that this method
cannot be used to construct SHAPEs whose memory requirement is infinite.

23

TDF: specification of subset to support ANSI C, C++ etc.

2.2 EXP

A value of SORT EXP is a piece of program that generates or manipulates run-time
values. EXP is by far the richest SORT, with 99 constructs. There are few primitive
EXPs: most are constructors which take mixtures of EXPs and arguments of other
SORTs. There are constructs delivering EXPs that correspond to the declarations,
program structure, procedure calls, assignments, pointer manipulations, arithmetic
operations, tests etc. of programming languages.

The EXP constructs can conveniently be broken down into ten broad classes
concerned with:

Declarations and Naming
Integers and Arithmetic
Floating Point Values
POINTERs
Procedures
Program Structure and Flow of Control
OFFSETs
NOFs and SOMEs
TUPLEs, PARAM_PACKs and UNIONs
Miscellaneous

These arc described in the following sections. (Remember that the notation used
here was introduced in § 1.6.)

2.2.1 Declarations and Naming

2.2.1.1 identify

register: BOOL,
local: BOOL,
name: TAG X,
def: EXP X,
body: EXP Y

-> EXP Y

defis evaluated to produce a value, v. Then body is evaluated. During the evaluation, v is
bound to name. This means that inside body an evaluation of obtainjtag(name) will
produce the value v.

The value delivered by identify is that produced by the evaluation of body. Thus the
SHAPE of the value delivered by identify is the same as the SHAPE, Y, of body.

24

TDF: specification of subset to support ANSI C, C++ etc.

The BOOL, register, gives information about the usage of name: if true, it indicates
that name is heavily used within body and that allocation to a register, if possible,
would be advantageous.

The BOOL, local, gives information about possible external Access to name: if true,
name will not be supplied as an argument to obtain nLtag - ie. there will be no
non-local access to the value which name names. This information is of value in
deciding whether certain optimisations are possible.

The TAG given for name will not be re-used within the current UNIT. No rules for the
effect of the hiding of one TAG by another, equal TAG are given: this will not
happen. See §2.2.1.4 for a discussion of this point.

In the case where def is simply obtaintag(t), translators should produce no code, since
this usage of identify amounts to a mere renaming of t as name. Similarly, if def is
constructed by a succession of field constructs on obtain tag(t), translators should
produce no code, since this usage amounts to the naming of a part of a value which
has already been named.

2.2.1.2 variable

register: BOOL,
local: BOOL,
name: TAG POINTER(X),
init: EXP X,
body: EXP Y

-> EXP Y

init is evaluated to produce a value, v. Space is allocated to hold a value whose
SHAPE is X. The space is initialised with v. Then body is evaluated. During the
evaluation, an original POINTER pointing to the allocated space is bound to name. This
means that inside body an evaluation of obtain tag(name) will produce an original
POINTER pointing to the space.

The value delivered by variable is that produced by the evaluation of body. Thus the
SHAPE of the value delivered by variable is the same as the SHAPE, Y, of body.

The BOOL, register, gives information about the usage of name: if true, it indicates
that name is heavily used within body and that allocation to a register, if possible,
would be advantageous.

The BOOL, local, gives information about possible external access to name: if true,
name will not be supplied as an argument to obtain nl_tag - ie. there will be no
non-local access to the value which name names. This information is of value in
deciding whether certain optimisations are possible.

25

V TDF: specification of subset to support ANSI C, C++ etc.

The TAG used for name will not be re-used within the current UNIT. No rules for the
effect of the hiding of one TAG by another, equal TAG are given; this will not
happen. See §2.2.1.4 for a discussion of this point.

The POINTER associated with name has a lifetime limited to the execution of body. Any
attempt to use it when body is not being executed is undefined.

The sharing properties of the POINTER are discussed in §2.2.4.1.1.

When compiling programming languages which permit uninitialised variable
declarations, make value is used to provide the undefined init EXP.

2.2.1.3 obtain-tag

name: TAG X

-> EXP X

The value with which the TAG name is bound is delivered. The SHAPE of the result

reflects the SHAPE o" the value with which the TAG is bound.

2.2.1.4 Binding: Discussion

The following constructs introduce TAGs:

identify
variable
conditional
repeat
labelled
make proc
make tagdef

makeid tagdec
makevartagdec

),,ing the evaluation of cach of these constructs (apart from make jdjagdec and
make vartagdec) a value, v, is produced which is bound to a TAG, t, during the
evaluation of an EXP. The TAG is in scope during the evaluation of the EXP. This
means that during the evaluation of the EXP, evaluation of obtain tag(t) (or
obtain n.t ag(e,s,0) will produce the value v. The behaviour of make id tagdec and
makevartagdec is different: the TAGs which they introduce are in scope
throughout the CAPSULE which contains them.

Each of the values introduced in a TDF UNIT will be named by a different TAG,
and so no scope rules are needed. (UNITs are self-contained collections of
declarations and definitions of TOKENs and TAGs. See §2.17 for details.)

26

TDF: specification of subset to support ANSI C, C++ etc.

2.2.2 Integers and Arithmetic

2.2.2.1 make int

v: VARIETY,
value: SIGNEDNAT

-> EXP INTEGER(v)

An integer value is delivered whose value is given by value, and whose VARIETY is
given by v. The integer value value will lie between the bounds of v. This ensures that
value is representable as an integer of VARIETY v.

2.2.2.2 plus

ov_err: ERRORTREATMENT,
arg I: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(V)

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
The sum of a and b is delivered as the result of the construct, which has the same
SHAPE as the construct's arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by overr.

If over- is ignore and the VARIETY, V, is non-negative, the calculation is performed
modulo 2^bits(V).

If ov err is ignore and the VARIETY is negative, the effect of overflow is undefined.

2.2.2.3 minus

ov .err: ERROR_TREATMENT,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(V)

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
The difference of a and b is delivered as the result of the construct, which has the
same SHAPE as the construct's arguments.

27

TDF: specification of subset to support ANSI C, C++ etc.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov err.

If ov err is ignore and the VARIETY, V, is non-negative, the calculation is performed
modulo 2Abits(V).

If overr is ignore and the VARIETY is negative, the effect of overflow is undefined.

2.2.2.4 mult

overr: ERRORTREATMENT,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(V)

argI and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
The product of a and b is delivered as the result of the construct, which has the same
SHAPE as the construct's arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov err.

If ov err is ignore and the VARIETY, V, is non-negative, the calculation is performed
modulo 2Abits(V).

If ov err is ignore and the VARIETY is negative, the effect of overflow is undefined.

Translators should if possible optimise multiplication by powers of 2 and any
relevant constants.

28

TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.5 Kinds of Division: Discussion

Two classes of division (D) and remainder (M) construct are defined. The two
classes have the same definition if both operands have the same sign. Neither is
defined if the second argument is zero.

Class 1:

pDlq=n

where p = n*q + (p Ml q)
sign(p Ml q) = sign(q)
0- Ip MI q1 < Iql

Class 2:

p D2 q = n

where p = n*q + (p M2 q)

sign(p M2 q) = sign(p)
0 < Ip M2 q1 < Iql

2.2.2.6 divl

ov_err: ERRORTREATMENT,
divO_err: ERRORTREATMENT,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(V)

argi and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
a DI b is delivered as the result of the construct, which has the same SHAPE as the

construct's arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ovrerr.

If ov-err is igno - and the VARIETY is negative, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO err.
If divOerr is ignore its effect is undefined.

Translators should if possible optimise division by constants, especially powers of 2.

29

nlkIII nl lllllmn Iml 111il[l~l 1! RI- I811m m II-n u I[l m ! .-

-TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.7 div2

overr: ERROR_TREATMENT,
div0.err: ERRORTREATMENT,
argl: EXP INTEGER(V),
arg2: EXP IN'flGEReI)

-> EXP INTEGER(V)

argl and arg2 are evaluated to produce integer values, a and b, of the sam.- VARIETY.
a D2 b is delivered as the result of the construct, which has the same SHAPE as the

construct's arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov-err.

If ov-err is ignore and the VARIETY is negative, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO.err.
If divO err is ignore its effect is undefined.

Translators should if possible optimise division by constants, especially powers of 2.
This is possible if V is non-negative.

2.2.2.8 mod

div0_err: ERRORTREATMENT,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(V)

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
a Ml b is delivered as the result of the construct, which has the same SHAPE as the
construct's arguments.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO.err.
If divO err is ignore its effect is undefined.

Translators should if possible optimise modulus by powers of 2.

30

TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.9 ren2

divO er': ERROR_TREATMENT,
argI: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(V)

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
a M2 b is delivered as the result of the construct, which has the same SHAPE as the
construct's arguments.
If b is zero a divide-by-zero error is caused and handled in the way specified by divO err.

IfdivO err is ignore its effect is undefined.

2.2.2.10 exact-divide

argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(V)

argi and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
The quotient of a and b is delivered as the result of the construct, which has the same
SHAPE as the construct's arguments. b will be an exact divisor of a.

2.2.2.11 negate

ov_err: ERROrTREATMENT,
arg: EXP INTEGER(V)

-> EXP INTEGER(V)

arg is evaluated to produce an integer value, a. The negation of a is delivered as the
result of the construct, which has the same SHAPE as the construct's argument.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by overr.

If ov err is ignore, the effect of overflow is undefined.

31

TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.12 abs

ov err: ERRORTREATMENT,

arg: EXP INTEGER(V)

-> EXP INTEGER(V)

arg is evaluated to produce an integer value, a. The absolute value of a is delivered as
the result of the construct, which has the same SHAPE as the construct's argument.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov err.

If overr is ignore, the effect of overflow is undefined.

2.2.2.13 Number Conversion: Discussion

There is no automatic conversion between integer VARIETYs.

Conversions between integer VARIETYs are carried out by change . t. in every case,
if the same integer is expressible in the destination VARIETY, this integer
expressed in the destination VARIETY is the result.

Certain other conversions are provided which are easy to implement in 2's
complement machines, and possible in other representations.

When a negative signed integer is converted tn a non-negative VARIETY whose maxint
is greater than both the modulus of the minint and the maxint of the source VARIETY,
the resulting value is obtained by adding one more than the maxint of the target
VARIETY.

When an integer is converted to a non-negative VARIETY with maxint less than either
the modulus of the minint or the maxint of the source VARIETY, the result is the
remained (Ml) on division by the number one greater than the maxint of the target
VARIETY.

All other conversions are target-defined.

32

TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.14 change.var

w: VARIETY,
arg: EXP INTEGER(V)

-> EXP INTEGER(w)

arg is evaluated to produce an integer value, a. If a is expressible in VARIETY w, then
it is delivered as the result of the construct. The result has the ShAPE
INTEGER(w).

Certain other special target-dependent conversions are defined in §2.2.2.13. No other
conversions are defined.

2.2.2.15 shift left

overr: ERRORTREATMENT,
arg1: EXP INTEGER(V 1),
arg2: EXP INTEGER(V2)

-> EXP INTEGER(V1)

argl and arg2 are evaluated to produce values a and places. The result is equivalent
to:

if places < 0

then div l(ov err, impossible, a, 2 -places)

else mult(ov_err, a, 2
places)

Translators should optimise cases where the number of shifts is a constant.

33

r- TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.16 shift-right

overr: ERROR_TREATMENT,
argl: EXP INTEGER(VI),
arg2: EXP INTEGER(V2)

-> EXP INTEGER(VI)

argl and arg2 are evaluated to produce values a and places. The result is equivalent
to:

if places > 0
then divl(ov_err, impossible, a, 2P

laces)

else mult(ov.err, a, 2
"places)

Translators should optimise the cases where the number of shifts is a constant.

2.2.2.17 round

ov_err: ERRORTREATMENT,
v: VARIETY,
arg: EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a floating point value, a. If the nearest integer to a is
expressible in VARIETY v, then a value of that integer is created and delivered.

However, if that nearest integer cannot be expressed in VARIETY v, an overflow error
is caused and handled in the way specified by ov-err.

If ov err is ignore and the VARIETY, v, is non-negative, the calculation is performed

modulo 2Abits(v).

If overr is ignore and the VARIETY is negative, the effect of overflow is undefined.

2.2.2.18 truncate

overr: ERROR_TREATMENT,
v: VARIETY,
arg: EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a floating point value, a. If the integer part of a is
expressible in VARIETY v, then a value of that integer is created and delivered.

34

F TDF: specification of subset to support ANSI C, C++ etc.

However, if that nearest integer cannot be expressed in VARIETY v, an overflow error
is caused and handled in the way specified by overr.

If ov err is ignore and the VARIETY, v, is non-negative, the calculation is performed
modulo 2Abits(v).

If overr i ignore and the VARIETY is negative, tle effect of overflow is undefined.

2.2.2.19 bits to integer

v: VARL TY,
ov_err: ELW OR_TREATMENT,
arg: EXP N(':(INTEGER(O,1), N)

-> EXP INTEGER(v)

arg is evaluated to produce an NOF(INTEGER(0,1), N) value, r. This value is
converted to an integer, a, of VARIETY v, which is delivered.

The manner in which a is calculated depends on the VARIETY v. If v is a non-negative
VARIETY - ie. its lower bound is greater than or equal to zero - a is derived as follows:

ji__0 N ri *,. i

However, if v is a negative VARIETY - ie. its lower bound is less than zero - a is
derived as follows:

(if rN =

then -1

else) *Z i_.Nl ri * 2i

If a cannot be expressed in the VARIETY v, an overflow error is caused and handled in
the way specified by overr.

If ov err is ignore and the VARIETY v is non-negative, the calculation is performed
modulo 2Abits(v).

If ov err is ignore and the VARIETY v is negative, the effect of overflow is
undefined.

35

TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.20 div.reml

overr: ERRORTREATMENT,
divO_err: ERROR_TREATMENT,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP TUPLE(INTEGER(V), INTEGER(V))

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
A TUPLE of (a DI b, a Ml b) is delivered as the result.

If the result cannot be expressed in the VARIETY V, an overflow error is caused and
handled in the manner specified by ov err. This only occurs for negative VARIETYs
in the special case of dividing minint by -1.

If ov_err is ignore and the VARIETY is negative, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO err.
If divO err is ignore its effect is undefined.

2.2.2.21 div-rem2

ov_err: ERRORTREATMENT,
div0_err: ERRORTREATMENT,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP TUPLE(INTEGER(V), INTEGER(V))

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
A TUPLE of (a D2 b, a M2 b) is delivered as the result.

If the result cannot be expressed in the VARIETY V, an overflow error is caused and
handled in the manner specified by ov .err. This only occurs for negative varieties in
the special case of dividing minint by -1.

If ov_err is ignore and the VARIETY is negative, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divOerr.
If divO err is ignore its effect is undefined.

36

TDF: specification of subset to support ANSI C, C++ etc.

2.2.2.22 integer-test

ntest: NTEST,
bad: LABEL TOP,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP TOP

argi and arg2 are evaluated to produce integer values, a and b, of the same integer
VARIETY. These values are compared using the test ntest. If the test succeeds, the
construct delivers a value of SHAPE TOP. If it fails, control passes to the LABEL bad
with a value of SHAPE TOP. Since the only way in which *.,: -",nstruct can deliver
a result is when the test succeeds, the SHAPE of the result of the construct is itself
TOP.

To give an example, if ntest is greater, then if a is greater than b the construct delivers
a value of SHAPE TOP. If a is not greater than b is false, control passes to the LABEL
bad.

2.2.2.23 integer test i

ntest: NTEST,
var: VARIETY,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP INTEGER(var)

argl and arg2 are evaluated to produce integer values, a and b, of the same integer
VARIETY. These values are compared using the test ntest. If the test succeeds, 1 is
delivered. Otherwise, 0 is delivered. The SHAPE of the result is INTEGER(var). var
will accommodate the values 0 and 1.

2.2.2.24 integer.to.bits

arg: EXP INTEGER(V)

-> EXP NOF(BIT, n)

argl is evaluated to produce an integer value a. A value r of SHAPE NOF(BIT, n) is
created and delivered, where n shall be the smallest number of bits required to
represent the full (ie. minint to maxint) range of values in INTEGER(V).

[37

t

¢
! I| | |

TDF: specification of subset to support ANSI C, C++ etc.

The value r is chosen so that if a is non-negative

,j -=0n' ri * 2i

and if a is negative

a =-0 n ri * 2 i - maxint(V) - 1

On twos-complement machines, translators should not need to generate any code to
implement this construct.

2.2.2.25 Character Sets: Discussion

TDF, as a representation of program, does not manipulate characters explicitly.
Instead, they are represented by integers. Conventions for mapping characters onto
integers are required.

Characters appear in programs, and need to correspond to the characters which
appear on the printers and displays of target machines. But the hardware of target
machines can use a multiplicity of different collating sequences for characters. In
order to achieve portability of TDF programs it is necessary to choose a standard
representation for characters in the TDF itself. Translation to the collating sequence
for the hardware devices then should occur only on the point of transmission to those
devices.

Since ANSI C is compatible with ASCII and Ada makes it mandatory, TDF
standardises on ASCII.

Other character sets, such as Japanese, may need to be represented as strings written
in programs. But not all target machines have Japanese printers. To conform with
the need for portability of TDF programs a similar standard represention of
characters in TDF and translation at the device will be needed, for those programs
and target machines which use Japanese characters. Multi-byte characters will
probably be used. Similar standards are needed for all such character sets. These
will have to be standardised as the need arises.

The customisation of user's programs to give messages in the user's own language
can be achieved by tokenising the messages (or the collection of messages) and
making the substitutions during installation of the program.

38

TDF: specification of subset to support ANSI C, C++ etc.

2.2.3 Floating Point Values

2.2.3.1 make-floating

f: FLOATING_VARIETY,
sign: BOOL,
mantissa: STRING,
base: NAT,
exponent: SIGNEDNAT

-> EXP FLOAT(f)

mantissa will be a STRING of characters, each of which is either ASCII's decimal
point symbol or is greater than or equal to ASCII's zero. It will be readable in base base.

The BOOL sign determines the sign of the value to be delivered. If it is true, the
value will be positive: if false, negative.

A floating point value v of FLOATINGVARIETYf is created and delivered. The
value is the nearest to

mantissa' x (baseexponent)

where mantissa' is mantissa read in the base base, with the sign determined by sign.

v will be representable in the FLOATINGVARIETY f.

2.2.3.2 floatingplus

overr: ERRORTREATMENT,
argl: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP FLOAT(F)

argl and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. The sum of a and b is del;',ered as the result of the construct,
which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATINGVARIETY F, an overflow error is
caused and handled in the way specified by ov err. If overr is ignore its effect is

undefined.

39

TDF: specification of subset to support ANSI C, C++ etc.

2.2.3.3 floatingminus

ov_err: ERROR_TREATMENT,
argI: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP FLOAT(F)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGVARIETY. The difference of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATING_VARIETY F, an overflow error is
caused and handled in the way specified by ov err. If ov-err is ignore its effect is
undefined.

2.2.3.4 flop'g-mult

ov err: ERROR_TREATMENT,
argl: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP FLOAT(F)

argl and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGVARIETY. The product of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATINGVARIETY F, an overflow error is
caused and handled in the way specified by ov err, If ov err is ignore its effect is
undefined.

2.2.3.5 floating div

ov err: ERROR_TREATMENT,
divO_err: ERROR_TREATMENT,
argl: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP FLOAT(F)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGVARIETY. The quotient of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATINGVARIETY F, an overflow error is

40

TDF: specification of subset to support ANSI C, C++ etc.

caused and handled in the way specified by ov err. If ov err is ignore its effect is
undefined.

If b is zero a divide-by-zero error is produced and handled in the way specified by

divOerr. If divO err is ignore its effect is undefined.

2.2.3.6 floatingnegate

ov_err: ERROR_TREATMENT,
arg: EXP FLOAT(F)

-> EXP FLOAT(F)

argi is evaluated to produce a floating point value, a. The negation of a is delivered as
the result of the construct, which has the same SHAPE as the construct's argument.

If the result cannot be expressed in the FLOATINGVARIETY F, an overflow error is
caused and handled in the way specified by orverr. If ov err is ignore its effect is
undefined.

2.2.3.7 float

overr: ERROR_HANDLER,
f: FLOATING-VARIETY,
arg: EXP INTEGER(V)

-> EXP FLOAT(f)

arg is evaluated to produce an integer value, a. An equal floating point value of
FLOATINGVARIETYf is created and delivered. Any rounding necessary is
target-defined.

If the integer value a is not representable in FLOATINGVARIETY f an overflow error

is generated and handled by ov-err. If ov err is ignore the effect is undefined.

2.2.3.8 changefloatingvariety

overr: ERROR_TREATMENT,
f: FLOATINGYARIETY,
arg: EXP FLOAT(F)

-> EXP FLOAT(f)

arg is evaluated to produce a floating point value, a. A floating point value is created
and delivered which has FLOATINGVARIETYf and is equal to a. This conversion is
target-defined.

41

TDF: specification of subset to support ANSI C, C++ etc.

If a cannot be expressed in FLOATING_VARIETYf, an overflow error is caused and
handled in the way specified by overr. If overr is ignore its effect is undefined.

2.2.3.9 floatingjest

ntest: NTEST,
bad: LABEL TOP,
argI: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP TOP

argl and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING.VARIETY. These values are compared using the test ntest. If the test
succeeds the construct delivers a value of SHAPE TOP. If it fails, control passes to
the LABEL bad with a value of SHAPE TOP. Since the only way in which the
construct can deliver a result is when the test succeeds, the SHAPE of the result of
the construct is itself TOP.

To give an example, if ntest is greater, then if a is greater than b the construct delivers
a value of SHAPE TOP. If a is not greater than b is false, control passes to the LABEL
bad.

2.2.3.10 floating test i

ntest: NTEST,
var: VARIETY,
argl: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP INTEGER(var)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGVARIETY. These values are compared using the test ntest. If the test
succeeds, 1 is delivered. Otherwise, 0 is delivered. The SHAPE of the result is
INTEGER(var). var will accommodate the values 0 and 1.

2.2.4 POINTERs

2.2.4.1 POINTERs: Discussion

Before describing the constructs which manipulate POINTERs, it is useful to
introduce three important concepts - sharing, null POINTERs and original
POINTERs

42

i 1 II I i ll lll i i lll i lll llm illlIm~ i ~ ll lM

r TDF: specification of subset to support ANSI C, C++ etc.

2.2.4.1.1 Sharing

Sharing is a concept which relates only to POINTERs. If a POINTER, a, points to a
space, aspace, and a POINTER, b, points to a space, bspace, and aLspace and
b-space overlap, then a and b are said to share. In other words, if an assignment to b can
change the result of inspectng the contents of a, or vice versa, then a and b shZre.

2.2.4.1.2 Null POINTERs

Null POINTERs are required in order to provide a suitable value to put at the end of
a list and for similar puposes. Any attempt to obtain the contents of a null
POINTER, or to use it as the destination in an asign cc nstruct, is defined to produce
a detectable error.

If add toptr or subtract fromptr are applied to a null POINTER the effect is
undefined.

Null POINTERs cannot share.

2.2.4.13 Original POINTERs

A POINTER is an original POINTER if it is created by an evaluation of variable, a
procedure application (which involves the creation of a POINTER to the parameter)
or a library routine which delivers a fresh POINTER.

A POINTER is said to be derived from an original POINTER if and only if it is
either a copy of that POINTER or obtained from it by a succession of the following
constructs:

add .to_ptr
ptr field
subtract_from.ptr

Every POINTER is derived from just one original POINTER.

2.2.4.2 addtoptr

ptr: EXP POINTER(X),
off: EXP OFFSET(X,Y)

-> EXP POINTER(Y)

ptr is evaluated to produce a POINTER p and off to produce ar OFFSET value o. A
POINTER is created and delivered which points to space for a value of SHAPE Y
offset ahead by o from the space pointed to by p. If p is null, the result is undefined.

43

L,

'TDF: specification of subset to support ANSI C, C++ etc.

2.2.4.3 subtract-from ptr

pt': EXP POINTER(X),
off: EXP OFFSET(Y,X)

-> EXP POINTER(Y)

ptr is evaluated to produce a POINTER p and off to produce an OFFSET value o. A
POINTER is created and delivered which points to space for a value of SHAPE Y
offset back by o from the space pointed to by p. If p is null, the result is undefined.

2.2.4.4 ptr field

pmtuple: EXP POINTER(TUPLE fl,= n S,),
(n > l 1 I component < n)

(Si .. Scomponent are SOME-free)
component: NAT

-> EXP POINTER Scomponcnt

ptrtuple is evaluated to produce a POINTER p to a space, sp, containing a value of
SHAPE POINTER TUPLE(..). A POINTER to the component-th value from the
TUPLE in the space sp is created and delivered. The result shares with p.

(A POINTER(PARAMPACK(..)) may also be supplied, with the same effect.)

If p is a null POINTER, then so is the result. However, they need not be equal null
POINTERs.

2.2.4.5 ptr-unpad

component-shape: SHAPE,
ptr: EXP POINTER(X)

-> EXP POINTER(componentshape)

ptr is evaluated to produce a POINTER p to a space, sp, containing a UNION of
SHAPE arg.shape. A POINTER(component shape) pointing to that space within sp
which contains the component value of SHAPE component-shape is created and
delivered. The result and p share.

If p is a null POINTER, then so is the result. However, they need not be equal null
POINTERs.

44

TDF: specification of subset to support ANSI C, C++ etc.

2.2.4.6 assign

err: ERROR-TREATMENT,
ptr: EXP POINTER(X),
val: EXP Y, (Y will be an initial segment of X}
nooverlap: BOOL

-> EXP TOP

ptr and val are evaluated to produce values, p and v. The POINTER, p, will not be
volatile in the sense of ANSI C. The value v is put into the space pointed to byp. If p is a
null POINTER then a null pointer error occurs which is handled as specified by err. If
err is ignore its effect is undefined.

nooverlap indicates whether or not v and the space pointed to by p may overlap. If it is
true, they will not: if it is false, they may. In the case where they may overlap,
translators shall implement the move to have the same effect as if they did not
overlap.

If the space to which p points does not lie wholly within the space pointed to by the

original POINTER from which p is derived, the effect is undefined.

2.2.4.7 Initial Segments: Discussiou

The definition of assign refers to the possibility that one SHAPE may be an "initial
segment" of another. This concept applies to three SHAPE constructors:

TUPLE
PARAMPACK
NOF

45

TDF: specification of subset to support ANSI C, C++ etc.

The rules are:

TUPLE(X,Y ..) is an initial segment of TUPLE(X,Y,Z ..).

PARAMPACK(X,Y ..) is an initial segment of PARAMPACK(XY,Z ..).

X is an initial segment of TUPLE(X,Y).

X is an initial segment of PARAMPACK(X,Y).

NOF(X,m) is an initial segment of NOF(X,n), where m=<n.

X is an initial segment of NOF(X,n), where n.,O.

X is an initial segment of X.

"is an initial segment of' is a transitive relation.

2.2.4.8 contents

is null:ERROR_TREATMENT,
sh: SHAPE, { sh will be SOME-free)
ptr: EXP POINTER(X) {sh will be an initial segment of X

-> EXP sh

ptr is evaluated to produce a value p. The POINTER p will not be volatile in the sense
of ANSI C. The content of the space pointed to by p is delivered as the result. If p is a
null POINTER, then a null.pointer error is caused and handled according to is-null. If
isnull is ignore, the effect is undefined.

If the space to which p points does not lie wholly within the space pointed to by the

original POINTER from which p is derived, the effect is undefined.

2.2.4.9 coerce Dtr to initial segment

ptr: EXP POINTER(X),
sh: SHAPE { sh will be an initial segment of X}

-> EXP POINTER(sh)

ptr is evaluated to produce a POINTER value p. The POINTER p is delivered as the
result of the construct, but now with th SHAPE sh. The result is equal top.

46

I F

TDF: specification of subset to support ANSI C, C++ etc.

2.2.4.10 assignto volatile

err: ERRORTREATMENT,
ptr: EXP POINTER(X),
val: EXP Y, { Y will be an initial segment of X)
no._overlap: BOOL

->EXP TOP

ptr and val are evaluated to produce values, p and v. The POINTER, p, will be volatile
in the sense of ANSI C. The value v is put into the space pointed to by p. If p is a null
POINTER then a null.pointer error occurs which is handled as specified by err. If err is
ignore its effect is undefined.

no overlap indicates whether or not v and the space pointed to by p may overlap. If it is
true, they will not: if it is false, they may. In the case where they may overlap,
translators shall implement the move to have the same effect as if they did not
overlap.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined,

2.2.4.11 contents-of volatile

is_null:ERRORJTREATMENT.
sh: SHAPE, (sh will be SOME-free
ptr: EXP POINTER(X) { sh will be an initial segment of X

-> EXP sh

ptr is evaluated to produce a POINTER value p. The POINTER p will be volatile in the
sense of ANSI C. The content of the space pointed to by p is delivered as the result. If p
is a null POINTER, then a nulljointer error is caused and handled according to isnull.
If is_null is ignore, the effect is undefined.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

4'

i, N I N il I ll n vil l I•I!H I!l~' III l

TDF: specification of subset to support ANSI C, C++ etc.

2.2.4.12 move-some

noovtrlap: BOOL,
ptrl: EXP POINTER(SOME(X)),
ptr2: 1--XP POINTER(SOME(X)),
off: EXP OFFSET(X,X)

-> EXP TOP

ptrl, ptr2 and off are evaluated to produce POINTER value, p1 and p2 and an OFFSET
value o. A quantity of data in the space pointed to by pl is moved to the space pointed
to by p2. The data shifted lies between the start of the space pointed to by pl and the
value offset from the start by o.

nooverlap indicates whether or not the source and destination spaces may overlap.
If it is true, they will not: if it is false, they may. In the case where they may
overlap, translators shall implement the move to have the same effect as if they did
not overlap.

If the space to which p2 points does not lie wholly within the space pointed to by the

original POINTER from which it is derived, the effect is undefined.

2.2.4.13 pointer-test

test: NTEST,
bad: LABEL TOP,
ptrl: EXP POINTER(X),
ptr2: EXP POINTER(X)

-> EXP TOP

ptrl and ptr2 are evaluated to produce POINTER values, pl and p2. These values are
compaed using the test specified by test. If the test succeeds, the construct delivers a
value of SHAPE TOP. If the test fails, control passes to the LABEL bad with a value of
SHAPE TOP.

Since the only way in which pointer test can deliver a result is when the test
succeeds, the SHAPE of the result ofpoin:er-test is itself TOP.

48

A & , I I I I lIlII III II illm 1I Iiui ni iiii ,i

TDF: specification of subset to support ANSI C, C++ etc.

The meaning in this context of the NTESTs equal and no:_equal is straightforward. But
the meaning of greater than (and by extension all the others) requiies definition.
Given a POINTER(X) value, p, the value delivered by:

addto.ptr(p,
arrayelement offset(X)
)

is greater than p.

If p] and p2 do not share, the effect is implementation defined.

2.2.4.14 pointer testi

test: NTEST,
var: VARIETY,
ptrl: EXP POINTER(X),
ptr2: EXP POINTER(X)

-> EXP INTEGER(0,1)

ptrl and ptr2 are evaluated to produce POINTER values, pl and p2. These values are
compared using the test specified by test. If the test succeeds, I is delivered.
Otherwise 0 is delivered. The SHAPE of the result is INTEGER(var). var will
accommodate the values 0 and 1.

The meaning of the NTEST is as defined ur der pointer-test.

If p1 and p2 do not share, the effect is implementation defined.

2.2.4.15 subtractptrs

ptrl: EXP POINTER(X),
ptr2: EXP POINTER(X)

-> EXP OFFSET(X,X)

ptrl and ptr2 are evaluated to produce POINTER values, p] and p2. If pl and p2 share,
then the OFFSET of p1 from p2 is delivered as the result.

If p] and p2 do not share, the effect is undefined.

49

TDF: specification of subset to support ANSI C, C++ etc.

2.2.4.16 ptr.is.null

noLnull: LABEL TOP,
ptr: EXP POINTER(X)

-> EXP TOP

ptr is evaluated to produce a POINTER value, p. If p is found to be a null POINTER,
the construct delivers a value of SHAPE TOP. If it is not a null POINTER, control
passes to the LABEL not.null with a value of SHAPE TOP.

2.2.4.17 ptr not.null

isnull: LABEL TOP,
ptr: EXP POINTER(X)

-> EXP TOP

ptr is evaluated to produce a POINTER value, p. If p is found not to be a null
POINTER the construct delivers a value of SHAPE TOP. If it is a null POINTER,
control passes to the LABEL isnull with a value of SHAPE TOP.

2.2.4.18 Lifetimes: Discussion

This is a convenient point at which to introduce the concept of lifetime and discuss its
importance to writers of TDF translators.

A danger in ANSI C and other languages is the use of a pointer to a space which is
no longer "alive", meaning that the space pointed to is on a stack and has been
re-used for some other purpose. Such mistakes can be very hard to detect. Like ANSI
C, TDF permits this mistake to be made and specifies that the effect is undefined.

TDF defines the lifetime of POINTERs arising from variable constructs to extend over
the body of the constructs. Any use of a POINTER inside the body of the variable
construct which gave rise to it has a defined effect: but the effect of any use of it outside
is undefined. Remember that "undefined" means that translators may refuse to
translate the TDF in question or produce code with any effect. Producer writers need
to bear ii mind that TDF translators are not obliged to police the correctness of their
use of POINTERs. It is unlikely that translators will refuse to translate pieces of
TDF which involve the use of POINTERs in an undefined fashion because, as we
remarked above, such usage can be very hard to detect: instead, it is likely that
translators will without warning produce "meaningless" code.

The parameter POINTER created on procedure application behaves similarly: its
lifetime extends over the body of the PROC being applied.

Library routines and other programs which are linked in may deliver POINTER

so

TDF: specification of subset to support ANSI C, C++ etc.

results. The lifetime of these POINTERs depends entirely on the content of the
programs which deliver them. If the POINTER delivered is the same as a POINTER
parameter, then it will have the same lifetime as the parameter: but if the
POINTER was generated afresh by the program, then it may have any lifetime - eg.
until it is explicitly deallocated by another library routine.

The lifetime rles for the POINTERs arising from variable constructs and procedure
application permit a conventional stack implementation for TDF, although they do
not mandate it.

2.2.5 Procedures

2.2.5.1 Procedures: Discussion

The treatment of procedures varies considerably from language to language. TDF's
procedure constructs have been designed in order to cater for a wide range of
languages. However, because the ANSI C, C++, FORTRAN 77, COBOL and Pascal
procedure mechanisms are not as demanding as those of some other !anguages (eg.
Ada, ML etc.), the subset of TDF described here does not contain the full range of
procedure constructs offered by TDF.

All languages' treatments of procedures have one thing in common - a procedure
call is a means of applying the same piece of program to different pieces of data.
And so the TDF make_proc construct allows one to specify a TAG as the formal
parameter and to state its SHAPE; the scope of that TAG is the EXP body of the
procedure.

But languages differ over treating procedures as data-objects in their own right.
Pascal allows one procedure to be a parameter of another, but does not allow
assignment of procedure values or the delivery of a procedure as the result of
another. ANSI C allows both of these but restricts the declaration of procedures to a
global level. In some other languages the use of procedures as first-class data
objects is of the essence and provides a very effective means of data encapsulation.

However, despite this diversity of approaches, all these languages agree that the
code of a procedure is constant: the most that can vary is the parameter and the
non-local values. TDF's concept of procedures reflects this. Procedures will be
constructed and named only in TAGDEFs. They will not be constructed anywhere
else. First-class procedure values are therefore implemented by binding the relevant
obtain tag(t) to a value representing the non-locals, and supplying those non-locals
as part of the parameter when the procedure is called. The non-local access required
by ANSI C, C++, FORTRAN 77 and Pascal is less demanding: all that is required is
that one procedure be able dynamically to obtain a value from the workspace of
another procedure. The obtain ni construct, specified below, achieves this.

51

TDF: specification of subset to support ANSI C, C++ etc.

2.2.5.2 make.proc

local: BOOL,
paramshape: SHAPE, {param-shape will be SOME-free}
param: TAG POINTER(param-shape),
body: EXP BOTTOM

-> EXP PROC

Evaluation of inake_proc delivers a PROC. When this procedure is applied to a
parameter using apply_proc, space is allocated to hold a value of SHAPE paramshape.
The value produced by the parameter, which will be of the correct SHAPE, is used
to initialise it. body is evaluated. During the evaluation, param is bound to an original
POINTER pointing to the space. This means that evaluation of obtain_tag(param) will
produce that pointer.

The SHAPE of body will be BOTTOM. This implies that if its evaluation terminates
it will be with the evaluation of either a return construct or a jwnp_nl.

The TAG used for param will not be re-used within the current UNIT. No rules for
the effect of the hiding of one TAG by another, equal TAG are given; this will not
happen. See §2.2.1.4 for a discussion of this point.

The only TAGs in scope within body are the TAGs declared in the CAPSULE which
contains the p:ocedure, param, and those TAGs introduced inside body itself. No other
TAGs will be used.

The BOOL, local, gives information about possible external access to param: if true,
param will not be supplied as an argument to obtain nltag - ie. there will be no
non-local access to the value which param names. This information is of value in
deciding whether certain optimisations are possible.

If a programming language permits more than one parameter, the compiler to TDF
will use make proc to construct a TDF procedure whose paramshape is
PARAMPACK(..).

The makeproc construct will appear only as the EXP in a TAGDEF.

2.25.3 make null_proc

-> EXP PROC

A null PROC is created and delivered. If this PROC is applied, the effect is
undefined. The null PROC may be tested for using proc is.null orproc notnull.

52

r TDF: specification of subset to support ANSI C, C++ etc.

2.2.5.4 proc is null

not_null: LABEL TOP,

procedure: EXP PROC

-> EXP TOP

procedure is evaluated to produce a PROC value, p. If p is found to be a null procedure,
the construct delivers a value of SHAPE TOP. If it is not a null procedute, control
passes to the LABEL not-null with a value of SHAPE TOP.

2.2.5.5 proc not.null

is-null: LABEL TOP,
procedure: EXP PROC

-> EXP TOP

procedure is evaluated to produce a PROC value, p. If p is found not to be a null
procedure, the construct delivers a value of SHAPE FOP. If it is not a null
procedure, control passes to the LABEL is-null with a value of SHAPE TOP.

2.2.5.6 proc eq

unequal: LABEL TOP,
procl: EXP PROC,
proc2: EXP PROC

-> EXP TOP

procI and proc2 are evaluated to produce PROC values. The representations of these
PROCs are compared. If they are found to be equal, the construct delivers a value of
SHAPE TOP. If they are found to be unequal, control passes to the LABEL unequal with
a value of SHAPE TOP.

2.2.5.7 proc neq

equal: LABEL TOP,
proc 1: EXP PROC,
proc2: EXP PROC

-> EXP TOP

procl and proc2 are evaluated to produce PROC values. The representations of these
PROCs are compared. If they are found to be unequal, the construct delivers a value
of SHAPE TOP. If they are found to be equal, control passes to the LABEL equal with a
value of SHAPE TOP.

53

TDF: specification of subset to support ANSI C, C++ etc.

2.2.5.8 proc eqj

var VARIETY,
procI: EXP PROC,
proc2: EXP PROC

-> EXP INTEGER(var)

procl and proc2 are evaluated to produce PROC values. The representations of these
values are compared. If they are found to be equal, 1 is delivered. Otherwise, 0 is
delivered. The SHAPE of the result is INTEGER(var). var will accommodate the
values 0 and 1.

2.2.5.9 applyproc

result_shape: SHAPE, { result-shape will be SOME-free}
proc: EXP PROC,
arg: EXP PARAM.PACK(..)

-> EXP result-shape

proc and arg are evaluated to produce values p and a. The procedure, p, is applied to a.
The result of this application is delivered as the result of the apply_proc construct. It
will have SHAPE resultshape.

If the SHAPEs of the values delivered by all the return constructs in p are not all equal
to result-shape, the effect is undefined.

2.2.5.10 applycurrentproc

result_shape: SHAPE, { resultshape will be SOME-free
arg: EXP PARAMPACK(..)

-> EXP resultshape

arg is evaluated to produce a value a. The procedure which is currently being
evaluated is applied recursively to a. The result of this recursive application is
delivered as the result of the apply currentjproc construct. It will have SHAPE
result_shape. If the SHAPEs of the values delivered by all the return constructs in the
current procedure are not all equal to resultshape, the effect is undefined.

The applycurrentJproc construct is provided in order to facilitate the optimisation
of recursion by installers.

54

TDF: specification of subset to support ANSI C, C++ etc.

2.25.11 return

with: EXPX

-> EXP BOTTOM

with is evaluated to produce a value w. The evaluation of the immediately enclosing
procedure ceases and the value w is delivered as the procedure's result.

Since the return construct can never terminate normally, the SHAPE of its result is
bottom.

2.2.5.12 current env

-> EXP ENV(T)

A value of SHAPE ENV(T) is created and delivered. It gives access to the values
associated with all TAGs introduced in the current procedure, except those which
were introduced with BOOL arguments indicating that they would not be the subject
of non-local access; and access to any visible LABELs in the current procedure.

T is the TAG introduced in the TAGDEF which contains the current procedure.

current-env provides a sufficient mechanism for accessing non-local values and
performing non-local jumps in the case of languages which do not treat procedures
as first-class values.

2.2.5.13 obtain nitag

env: EXP ENV(T),
s: SHAPE,
t: TAG s

-> EXP POINTER(X)

env is evaluated to produce an ENV value, e. The TAG, t, will be introduced in the
procedure to which e relates and will name a value of SHAPE s. A POINTER to that
value is created and delivered. Note that the value is drawn from the particular
evaluation of the procedure in which the ENV, e, was originally created.

The TAG, t, will be introduced with a BOOL argument indicating that it may be the
subject of non-local access.

55

TDF: specification of subset to support ANSI C, C++ etc.

2.2.6 Program Structure and Flow of Control

2.2.6.1 sequence

statements: rli=in EXP Yi, n > 0)

result: EXP X

-> EXP X

The EXPs in statements are evaluated in order. Then result is evaluated. The value
delivered by sequence is the value produced by result. Thus the SHAPE of the value
delivered by sequence is the same as the SHAPE of the value produced by result.

2.2.6.2 Availability of LABELs: Discussion

Labels are made available in the arguments of certain control structure constructs.
They are available only in the places specified in the descriptions of these
constructs. The constructs are:

conditional
repeat
labelled

During the evaluation of some or all of the arguments of these constructs LABELs
are bound to some or all of the arguments This means that during the evaluation of
the arguments concerned, the evaluation of goto(le) will cause control to pass to the
program fragment bearing LABEL !. Only those LABELs which have been introduced
in this way are available for use in an goto construct.

Non-local or "long" jumping is made possible by the make label value construct. This
delivers a LABELVALUE which enables non-local jumping to its argument
LABEL. As with goto, LABELs are available to make label value only within the
arguments of the three constructs listed above.

2.2.6.3 Jumping with Values: Discussion

In TDF, when control passes from a goto or other construct to a LABEL X, a value is
transferred and is bound to a TAG X introduced at the same place as the LABEL X.
This value will often be of SHAPE TOP, which means that nothing is being
transferred, but sometimes a useful value is involved.

This style of jumping is perfectly natural in computers, although as a matter of fact
i'ew programming languages permit values to be transferred in this way. TDF
provides the facility for two reasons: firstly to allow for its introduction in future
systems and languages; and secondly to provide for optimisation of looping
constructs. For example, the while,for etc. constructs of most programming languages

56

TDF: specification of subset to support ANSI C, C++ etc.

have to achieve their effects by side-effecting variables declared elsewhere. There
may be cases where this approach can be optimised to jumping with a value in TDF.

In an ANSI C program, goto will generally be used with the EXP maketop, and it may

well be worthwhile tokenising pieces of program to perform such jumps.

2.2.6.4 case

control: EXP INTEGER(V),
branches: li=l n(loweri:SIGNEDNAT,

upperi: SIGNEDNAT,
branchi: LABEL TOP

) {n>0}
-> EXP TOP

control is evaluated to produce an integer value, c. Then c is tested to see whether it
lies inclusively between each of the lower i and upperi , in order. If and when one of
these tests succeeds, control immediately passes to the LABEL branchi with a value of
SHAPE TOP. If c lies between none of the pairs of SIGNEDNATs, the construct
delivers a value of SHAPE TOP. Since this is the only way in which case can deliver a
result, the SHAPE of the result of case is itself TOP.

The sets of SIGNEDNATs will be disjoint.

Designers of translators should consider when this construct is best implemented by
means of a switch jump and when by means of a succession of tests. In particular,
the special case where there is only one branch should be optimised - it may be
possible to use a compare against bounds instruction; as well as the case of one
branch where the SIGNEDNATs are equal - which could be implemented as a
simple comparison.

2.2.6.5 conditional

local: (BOOL)_OPTION,
tk: (TAG X)_OPTION,
first: EXP W,
alt_label: LABEL X,
alt: EXP Y

-> EXP Z

first is evaluated. If first produces a result, f, this value is delivered as the result of the
whole construct and alt is not evaluated. However, if a goto(alt lab,exp) (or any other
jump to alt-lab) is encountered during the evaluation of first, then evaluation of first
will stop, alt will be evaluated and its result, a, delivered as the result of the whole
construct.

57

I-

TDF: specification of subset to support ANSI C, C++ etc.

Depending on the run-time behaviour offirst, the result of the construct may be
provided by first or by alt. The SHAPEs W and Y will either be equal to each other or
BOTTOM. If they are both BOTTOM, the SHAPE of the result is BO !TOM. If only
one of them is BOTTOM, it is the SHAPE of the other. And if both are equal and
non-BOTTOM, it is their SHAPE.

During the evaluation of alt the value, e, produced by exp is bound to tk. This means
that inside alt an evaluation of obtaintag(tk) will produce the value e, with SHAPE sh.
The presence of a TAG tk is optional. If a TAG is not supplied, then no binding
occurs, and X will be TOP.

The BOOL, local, will be supplied if ik is supplied. It gives information about possible
external access to tk: if true, tk will not be supplied as an argument to obtainnltag - ie.
there will be no non-local access to the value which tk names. This information is of
value in deciding whether certain optimisations are possible.

The TAG used for tk will not be re-used within the current UNIT. No rules for the
effect of the hiding of one tag by another, equal TAG are given; this will not happen.
See §2.2.1.4 for a discussion of this point.

Note that altlab is not available in alt. In consequence this construct cannot be used
to provide a loop.

2.2.6.6 repeat

local: (BOOL)_OPTION,
tk: (TAG X)_OPTION,
start: EXP X,
repeat.label: LABEL X,
body: EXP Y

-> EXP Y

start s evaluated to produce a value st of SHAPE X. Then body is evaluated. During
this evaduation of body, st is bound to tk. This means that inside body an evaluation of
obtain-tag(tk) will produce the value st.

If body produces a result, b, this is delivered as the result of the whole construct.
However, if a goto(repeat.label,exp) (or any other jump to repeat-label) is encountered
during the evaluation of body, then the evaluation of body stops. body is then evaluated
afresh.

During this new evaluation, the value, e, produced by exp is bound to tk. If a TAG is not
supplied, then X will be TOP.

The looping behaviour may be repeated indefinitely.

58

TDF: specification of subset to support ANSI C, C++ etc.

The BOOL, local, will be supplied if tk is supplied. It gives information about possible
external access to tk: if true, tk will not be supplied as an argument to obtainni tag - ie.
there will be no non-local access to the value which tk names. This information is of
value in deciding whether certain optimisations are possible.

The TAG used for tk will not be re-used within the current UNIT. No rules for the
effect of the hiding of one TAG by another, equal TAG are given; this will not
happen. See §2.2.1.4 for a discussion of this point.

2.2.6.7 labelled

starter: EXP X,

branches: l1i=l
n (shi: SHAPE,

branch-label,: LABEL Yi, {n > 0
locali: (BOOL)_OPTION,
tki: (TAG Yi)_OPTION,
branchi: EXP Zi

-> EXP W

starter is evaluated. If its evaluation runs to completion producing a value, st, then st is
delivered as the result of the whole construct. However, if a goto(branch labelm,exp) (or
any other jump to branchlabelm) is encountered during the evaluation of starter, then
the evaluation of starter stops. branchm is then evaluated. The result of exp, e, from the
goto is bound to tkm (if supplied) during this new evaluation. This means that inside
branch m an evaluation of obtain tag(tkm) will produce the value e with SHAPE shm. (If
tkm is not supplied, then Ym will be TOP.) If the evaluation of branchm runs to
completion, then the value which it produces, bm, is delivered as the result of the
whole construct.

However, if a goto(branch labeln,exp) (or any other jump to branch-labeln) is
encountered during the evaluation of branchm , then the evaluation of branchm stops.
branchn is then evaluated. (n may equal m.) As before, the value produced by exp is
bound with tkn (if supplied) during the evaluation of branchn.

Such jumping may continue indefinitely, but if any of the branches' evaluations runs
to completion producing a value, v, then that value is delivered as the result of the
whole construct.

Depending on their run-time behaviour, the result of the construct may be provided
by starter or one of the branches. The SHAPEs of starter and the branches must all be
equal to each other or BOTTI OM. If they are all BOTTOM, the SHAPE of the result
is BOTTOM. If they are not all BOTTOM, the SHAPE of the result is the
non-BOTTOM SHAPE.

The BOOLs, locali, will be supplied if tki are supplied. They give information about

59

ALi

TDF: specification of subset to support ANSI C, C++ etc.

possible external access to tki: if true, tki will not be supplied as an argument to
obtain..Iltag - ie. there will be no non-local access to the value which tki names. This
information is of value in deciding whether certain optimisations are possible.

The TAGs used for tki will not be re-used within the current UNIT. No rules for the
effect of the hiding of one TAG by another, equal TAG are given; this will not
happen. See §2.2.1.4 for a discussion of this point.

2.2.6.8 goto

dest: LABEL X,
with: EXP X

-> EXP BOTTOM

with is evaluated to produce a value w. Conuol then passes to the LABEL dest with the
value w. This construct will only bf- used where the LABEL dest is available.

Since the construct can never terminate normally, the SHAPE of its result is bottom.

2.2.6.9 make label value

lab: LABEL X

-> EXP LABELVALUE(X)

A LABEL-VALUE Iv is created and delivered which can be used as an argument to
goto_nl. If and when goto nl is evaluated with lv as its argument, control will pass to
lab.

lv could be supplied to another procedure, enabling that procedure to perform a
non-local jump back to the current procedure. If Iv is passed out the scope in which lab is
available, the effect of an attempt to jump to the LABEL to which it refers is
undefined.

2.2.6.10 goto.nl

env: EXP ENV(T),
dest: EXP LABELVALUE(X),
with: EXP X

-> EXP BOTTOM

exp, dest and with are evaluated to produce values e, d and w. The LABEL to which d
refers will be available in the procedure application to which e refers. Control passes to
that LABEL with the value w.

60

TDF: specification of subset to support ANSI C, C++ etc.

Since goto nl can never terminate normally, the SHAPE of its result is BOTTOM.

2.2.7 OFFSETs

2.2.7.1 array element .offset

sh: SHAPE { sh will be SOME-free I

-> EXP OFFSET(shsh)

An OFFSET value is created and delivered which is the offset between two adjacent
elements in an array of values of SHAPE sh. Because sh is SOME-free, the result is
determinable at translate-time.

2.2.7.2 tupleelement offset

sh: SHAPE, I sh will be TULE(fIi=l m Pi)
n:NAT (n=<m)

-> EXP OFFSET (TUPLE(I=I n-'I Pi),Pn)

An OFFSET value is created and delivered which measures the offset from the

beginning of a value of SHAPE TUPLE(fli. n-') Pi) to an adjacent value of SHAPE Pn"

2.2.7.3 offset add

offsetl: EXP OFFSET(X,Y),
offset2: EXP OFFSET(Y,Z)

-> EXP OFFSET(X,Z)

offset] and offset2 are evaluated to produce OFFSET values off] and ofJ2. These are
offsets between pairs of values of SHAPEs X and Y, and Y and Z respectively. A
new OFFSET is created and delivered which is the sum of these two OFFSETs.

61

I an i ! IIIIn l lllll I I I I i'l II I I I I I I I IBoomI

TDF: specification of subset to support ANSI C, C++ etc.

2.2.7.4 offset subtract

offsetl: EXP OFFSET(XZ),

offset2: EXP OFFSET(X,Y)

-> EXP OFFSET(Y,Z)

offset) and offset2 are evaluated to produce OFFSET values off) and off2. These are
offsets between pairs of values of SHAPEs X and Z, and X and Y respectively. A
new OFFSET is created and delivered which is the difference between these two
OFFSETs.

2.2.7.5 offset mult

offset: EXP OFFSET(X,X),
number: EXP INTEGER(V)

-> EXP OFFSET(X,X)

offset is evaluated to produce an OFFSET value off and number to produce an integer
value n. off describes the offset between two values in an array of X's which are diff
elements apart. A new OFFSET is created and delivered which describes the offset
between two values in an array of X's which are diff*n elements apart.

2.2.7,6 offsetdiv

ov_err:ERRORTREATMENT,
v: VARIETY,
offsetl: EXP OFFSET(X,X),
offset2: EXP OFFSET(X,X)

-> EXP INTEGER(v)

offset) and offset2 are evaluated to produce OFFSET values off) and offl. off) describes
the offset between two values in an array of X's which are diff1 elements apart. of2
describes the offset between two values in an array of X's which are diff2 elements
apart. The quotient of diffl and diff2 is delivered as the result of the construct, which
has the same SHAPE as the construct's arguments. diff2 will be an exact divisor of diffl.

If the result cannot be expressed in VARIETY v, an overflow error is caused and
handled in the way specified by ov-err.

62

TDF: specification of subset to support ANSI C, C++ etc.

!.2.7.7 offset negate

offset: EXP OFFSET(X,Y)

-> EXP OFFSET(Y,X)

offset is evaluated to produce an OFFSET value off. A new OFFSET value is created
and delivered which is the negation of off. Its SHAPE is the reverse of off s, because the
SHAPEs which it offsets from and to are reversed.

2.2.7.8 offset-test

ntest: NTEST,
bad: LABEL TOP,
off 1: EXP OFFSET(X,Y),
off2: EXP OFFSET(X,Y)

-> EXP TOP

off) and off2 are evaluated to produce OFFSET values, ol and o2. These values are
compared using the test ntest. If the test succeeds, the construct delivers a value of
SHAPE TOP. If it fails, control passes to the LABEL bad with a value of SHAPE TOP.

The meaning in this context of the NTESTs equal and not-equal is straightforward. But
the meaning of the others requires definition.

The value delivered by:

offset add (array element offser(X),
array element offset(X)
)

is greater than:

array element offset(X).

The value delivered by:

offset.negate(arrayelement offset(X))

is less than:

array element offset(X).

63

El'

TDF: specification of subset to support ANSI C, C++ etc.

2.2.7.9 offsettesti

ntest: NTEST,
var: VARIETY,
off 1: EXP OFFSET(X,Y),
off2: EXP OFFSET(X,Y)

-> EXP INTEGER(var)

off] and of2 are evaluated to produce OFFSET values, ol and o2. These values are
compared using the test ntest. If the test succeeds, 1 is delivered. Otherwise, 0 is
delivered. The SHAPE of the result is INTEGER(var). var will accommodate the
values 0 and 1.

The meaning of the NTEST is as defined under offset-test.

2.2.8 NOFs and SOMEs

2.2.8.1 make nof

parts: fli=l n EXP P { n > 0

-> EXP NOF(P, n)

The parts are evaluated. An NOF is created and delivered which is composed from
the values produced, in the same order as they occur in parts. Its size is determined by
the number of parts supplied.

2.2.8.2 n.copies

exp: EXP X,
number: NAT

-> EXP NOF(X, number)

exp is evaluated to produce a value e. An NOF value is created and delivered which
contains number copies of the value e.

64

TDF: specification of subset to support ANSI C, C++ etc.

2.2.8.3 trim nof

first: NAT,
number: NAT,
arg: EXP NOF(S, N) (first+number-l =< N)

-> EXP NOF(S, number)

arg is evaluated to produce an NOF value, a. A new NOF value consisting of number
components from a, starting atfirst is created and delivered as the result of trimnof.

2.2.8.4 concat-nof
argI: EXP NOF(S, M),

arg2: EXP NOF(S, N)

-> EXP NOF(S, M+N)

argl and arg2 are evaluated to produce values a and b which are NOFs derived from
the same SHAPE, S. A ne-v value is created and delivered with SHAPE
NOF(S,M+N). Its first M components are copies of the components of a and the last N
components are copies of the components of b.

2.2.8.5 and

arg 1: EXP S,
arg2: EXP S

-> EXP S { S =NOF(BITN) I INTEGER(V) I BIT)

argl and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
They may be NOF(INTEGER(0,1),N), INTEGER(V) or BIT. They are evaluated to
produce values a and b. The bit-wise intersection of a and b is delivered as the result.

2.2.8.6 or

argl: EXP S,
arg2: EXP S

-> EXP S (S = NOF(BIT,N) I INTEGER(V) I BIT}

arg] and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
They may be NOF(INTEGER(0,1),N), INTEGER(V) or BIT. They are evaluated to
produce values a and b. The bit-wise union of a and b is delivered as the result.

65

1, . .

'IDF: specification of subset to support ANSI C, C++ etc.

2.2.8.7 xor

argl: EXP S,
arg2: EXP S

-> EXP S I S = NOF(BIT,N) I INTEGER(V) I BIT}

argl and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
They may be NOF(INTEGER(0,1), N), INTEGER(V) or BIT. They are evaluated to
produce values a and b. The bit-wise exclusive or of a and b is delivered as the result.

2.2.8.8 not

arg: EXP S

-> EXP S (S = NOF(BIT,N) I INTEGER(V) I BIT)

arg has the same SHAPE as the result. It may be NOF(INTEGER(0,1),N),
INTEGER(V) or BIT. It is evaluated to produce a value a. The bit-wise negation of a is
delivered as the result.

2.2.9 TUPLEs, PARAM PACKs and UNIONs

2.2.9.1 make tuple

parts: Ili=, n EXP Pi

-> EXP TUPLE (l 1 ln Pi)

The parts are evaluated. A TUPLE is created and delivered which is composed from
the values produced, in the same order as they occur in parts.

2.2.9.2 makeparam pack

parts: li= 1 n EXP Pi

-> EXP PARAMPACK (rl1 =l P)

The parts are evaluated. A PARAMPACK is created and delivered which is
composed from the values produced, in the same order as they occur in parts.

n may be zero: this case will arise when it is desired to supply no parameters to a
procedure.

66

TDF: specification of subset to support ANSI C, C++ etc.

2.2.9.3 add to.tuple

tuple: EXP TUPLE ('lil Pi),
addencum: EXP Q

-> EXP TUPLE (1 i=1f
n Pi, Q)

tuple and addendum are evaluated to produce values t and a. A TUPLE having n+l
elements is created and delivered which is composed from the elements of t followed by
a.

2.2.9.4 field

component: NAT,
tuple: EXP TUPLE l =I" Pi (n> 1 }1 < component< n}

-> EXP Pcomponcnt

tuple is evaluated to produce a TUPLE value, t. The component-th field of t is delivered
as the result of thefield construct. The SHAPE of the result is the SHAPE of the
component-th element of tuple.

(This construct may also take a PARAM_PACK argument, with the same effect.)

2.2.9.5 pad

union-shape: UNION Fi=! X., (n > 0)
arg: EXP Y (there will be some k such that Y = Xk }

-> EXP UNION (Fl,=l n X,)

arg is evaluated to produce a value, a. A value of SHAPE union_shape is created from a
and delivered.

67

-J}

TDF: specification of subset to support ANSI C, C++ etc.

2.2.9.6 unpad

alt: SHAPE, alt will be SOME-free)
union: EXP UNION (f 1 1=] npi) (n > 1

(there will be some k such that alt = P

*>EXP alt

union is evaluated to produce a value u. The SHAPE of u will be UNION(..) and one of
its components will be olt. The value of u is then delivered, but now with SHAPE alt. If
u in fact has some other SHAPE, the effect is undefined.

Most translators will not generate any code for this construct. It changes the SHAPE
of the expression.

2.2.10 Miscellaneous

2.2.10.1 make-value

sh: SHAPE

-> EXP sh

A value of SHAPE sh is created and delivered. The content of the value is not
defined. This construct is used to provide the initial value in variable declarations when
the variable is uninitialised, and in other contexts where the source language does
not state what content a value should have.

2.2.10.2 clear-shape

sh: SHAPE

-> EXP sh

A value, v, of SHAPE sh is created and delivered.

The content of v is defined as follows:

if sh is BIT, v is false;

if sh is INTEGER(..), v is zero;

if sh is FLOATING(..), v is zero;

if sh is POINTER(..), v is a Pull POINTER;

68

V" TDF: specification of subset to support ANSI C, C++ etc.

if sh is TUPLE(ri=! , n X,), v is a TUPLE, each of whose elements is the same
as the result of clear shape(Xi);
if sh is PARAMPACK(I'i=1 n Xi), v is a PARAMPACK, each of whose
elements is the same as the result of clearshape(Xi);

if sh is UNION(fIi=I n Xi), v is a UNION; if v is subjected to a subsequent
unpad(Xl,v) the result will be the same as the result of clearshape(X): the
result of unpad with any SHAPE other than X1 is undefined;

if sh is NOF(X,N), v is an NOF containing N values, each of which is the
same as the result of clear shape(X);

if sh is OFFSET(X,X), v is a nil OFFSET.

sh will not be any SHAPE other than those listed above. sh will be SOME-free.

2.2.10.3 make string

str: STRING,
var: VARIETY

-> EXP NOF(INTEGER(var), L) { L is the length of str

An EXP holding the string str is created and delivered. The SHAPE of the
INTEGERs in the NOF is determined by var.

2.2.10.4 expcond

control: EXP INTEGER(V),
exp I: EXP X,
exp2: EXP X

-> EXP X

control will be a constant evaluable at translate-time. At translate-time, it is evaluated
to produce a value, c. If c is non-zero, then expi is selected for translation. If c is zero,
then exp2 is selected.

2.2.10.5 Constants: Discussion

The definition of expcond requires an EXP to be a "constant evaiable at
translate-time". For an EXP to satisfy this condition it must be constructed
according to the following rules:

it may not contain obtain tag(T) if the TAG, T, is not introduced inside the EXP;

69

I~l | I a a i H a H pl

F
TDF: specification of subset to support ANSI C, C++ etc.

it may not contain assignto volatile;

it may not contain contents.ofvolatile;

it may not contain obtain_nLitag;

it may not contain goto(l,..) if the LABEL, 1, is not introduced inside the EXP;

it may not contain make label.value(l) if the LABEL, 1, is not introduced inside the
EXP;

it may not contain gotonl;

it may not contain repeat;

it may not contain labelled constructs where there are jumps between any of the
branches;

it may not contain apply currentproc;

it may not contain return;

it may not contain currentenv;

it may not contain apply token(T,..) if the program fragment for which T stands
contains any EXPs which are not themselves constants evaluable at
translate-time.

The combined effect of these rules is to specify that in order to be evaluable at
translate-time and constant, an EXP must be completely self-contained.

2.2.10.6 make false

-> EXP BIT

A false BIT is created and delivered.

2.2.10.7 make true

-> EXP BIT

A true BIT is created and delivered.

70

Ii
r TDF: specification of subset to support ANSI C, C++ etc.

2.3 NAT

A value of SORT NAT is a static non-negative integer value of unbounded size.

2.4 SIGNED_NAT

A value of SORT SIGNED_NAT is a static integer value, positive or negative, of
unbounded size. There are three constructs:

The first simply comprises an integer.

The second and third are target-defined values - the lowest and highest integers
representable in a given VARIETY:

2.4.1 maxint

v: VARIETY

-> SIGNEDNAT

2.4.2 minint

v: VARIETY

-> SIGNED-NAT

2.5 VARIETY

A value of SORT VARIETY describes the different kinds of integer which are
available at run-time. There are two constructs:

The first comprises a pair of SIGNEDNATs which indicate the lower and upper
bound of integers that must be representable by the integer value at run-time (as
discussed in §2.1.2.1):

(SIGNED.NAT, SIGNED-NAT)

71

TDF: specification of subset to support ANSI C, C++ etc.

The second provides the ability to choose, at translate-time, which of two
VARIETYs is to be used:

2.5.1 variety_cond

control: EXP INTEGER(V),
vI: VARIETY,
v2: VARIETY

-> VARIETY

control will be a constant evaluable at translate-time. At translate-time, it is evaluated
to produce a value, c. If c is non-zero, then vl is selected for translation. If c is zero,
then v2 is selected.

varietycond is used to represent certain uses of ANSI C's "#if'.

A VARIETY is said to be "negative" if its lower bound is less than zero, and
"no,-negative" otherwise.

2.6 FLOATINGVARIETY

A value of SORT FLOATINGVARIETY describes the different kinds of floating
point numbers which are available at run-time. There are two constructs:

The first is a cartesian product of two values of SORT NAT and two of SORT
SIGNEDNAT.

(NAT, NAT, SIGNED-NAT, SIGNEDNAT)

These give details about the base to be used, the number of digits that must be
representable in the mantissa and the minimum and maximum values which the
exponent can take (as discussed in §2.1.2.2).

72

TDF: specification of subset to support ANSI C, C++ etc.

The second provides the ability to choose, at translate-time, which of two
FLOATING_VARIETYs is to be used:

2.6.1 floating variety cond

control: EXP INTEGER(V),
fv1: FLOATING_VARIETY,
fv2: FLOATINGVARIETY

-> FLOATING_VARIETY

control will be a constant evaluable at translate-time. At translate-time, it is evaluated
to produce a value, c. If c is non-zero, then fvl is selected for translation. If c is zero,
then .fv2 is selected.

2.7 TAG

A value of SORT TAG is an identifier standing for a run-time value. It is a static
non-negative integer of unbounded size.

For ease of exposition, TAGs are frequently qualified in this document by the
SHAPE of the value which they stand for. However, this does not m.ean that
SHAPEs feature at all in the representation of TAGs.

2.8 LABEL

A value of SORT LABEL is an identifier which stands for a program location - ie. a
destination for jumps.

Like TAGs, LABELs are frequently qualified in this document by a SHAPE. This is
the SHAPE of the value which should be passed to the piece of program which the
LABEL marks when a jump occurs. However, this does not mean that SHAPEs
feature at all in the representation of LABELs.

73

TDF: specification of subset to support ANSI C, C+-- etc.

2.9 NTEST

A value of SORT NTEST identifies one of a number of arithmetic tests. There a -e
six NTEST constructs:

greaterthan
greaterthanor equal
less than
less_than_orequal
equal
notequal

The names are se".-explanatory.

2.10 STRING

A value of SORT STRING is a constant string of characters.

2.11 BOOL

A value of SORT BOOL is one which can take only two values. There are two
constructs:

true
false

2.12 ERRORTREATMENT

A value of SORT ERRO '-TREATMENT controls program behaviour in the event
that a run-time error occurs. There are two constructs:

2.12.1 Impossible

This construct is used when the error cannot occur. For example, if the divide
opeation is dividing b, a constant which is known not to be zero, the div0 err
ERRORTREATMENT should be given the value impossiblL. This permits the
translator to avoid creating any code that might have been needed. This argument
should be produced by compiler writers whenever possible, since it permits the least
and fastest code to be produced.

For example, when translating an arithmetic operation with eror treatment imp ssible on
VAX, if the program at this point has overflow trap flag set or unset, the trap flag
reed not be changed.

If the error in question does nevertheless occur, the effect is undefined.

74

IL ,_.

TDF: specification of subset to support ANSI C, C++ etc.

2.12.2 Ignore

This construct is used when the error can occur, but an attempt is to be made to carry
on. In some constructs the effect will be undefined: in others a definition is given.

For example, when translating an arithmetic operation with error treatment ignore on
VAX, if the program at this point has everflow trap set, it will have to be unset.

2.13 CAPSULE

The SORT CAPSULE describes values which are independent pieces of TDF
program.

There is only one construct:

2.13.1 make-capsule

unit: UNIT

tok cxterns: (nli=1 x TOKEXTERN,)_OPTION

tag-extems: (li=1Y TAGEXTERNi)_OPTION

-> CAPSULE

Each EXTERN associates one of the TOKENs or TAGs in the UNIT with an
external name. Both tokexterns and tag externs are optionally supplied, but at least
one EXTERN will be given: otherwise the CAPSULE would be redundant since
there would be no means of referring to the program fragments or values defined in
its UNIT from outside!

When code produced from a CAPSULE is linked, those TAGs which are th- subject
of tagexterns are eligible for system linking in the normal way: ie. values
corresponding to TAGs which are defined in the CAPSULE are made available for
external use; and values corresponding to TAGs which are used in the CAPSULE
but not defined in it need to be linked in from elsewhere.

(§1.8.1 gives an overview of the structure and funciion of CAPSULEs.)

2.14 TOKEXTERN

A value of SORT TOKEXTERN expresses the connection between the name by
which a program fragment is known inside a CAPSULE - a TOKEN - and a name by
which it is to be known outside. There is only one construct:

75

TDF: specification of subset to support ANSI C, C++ etc.

2.14.1 make tok extern

internal: TOKEN,
external: STRING,
u: USAGE

-> TOKEXTERN

A TOKEXTERN is constructed which defines the program fragment known inside a
CAPSULE by the name internal to be known by the TDF Builder by the name external.
The USAGE, u, indicates whether the TOKEN internal is declared, defined and used i,
the CAPSULE.

The provision of a STRING argument in this construct reflects the TDF Builder's
reliance on strings, in harmony with current system linkers. However, the
development of new constructs to support other systems of naming is not precluded.

2.15 TAGEXTERN

A value of SORT TAGEXTERN expresses the connection between the name by
which a value is known inside a CAPSULE - a TAG - and a name by which it is to
be known outside. There is only one construct:

2.15.1 make tagextern

internal: TAG,
external: STRING,
u: USAGE

-> TAGEXTERN

A TAGEXTERN is constructed which defines the value known inside a CAPSULE
by the name internal to be known by the TDF Builder and system linkers by the name
external. The USAGE, u, indicates whether the TAG internal is declared, defined and
used in the CAPSULE.

The provision of a STRING argument in this construct reflects current linkers'
reliance on strings. However, the development of new constructs to support other
systems of naming is not precluded.

76

II

TDF: specification of subset to support ANSI C, C++ etc.

2.16 USAGE

A value of SORT USAGE indicates whether a TAG or TOKEN is declared, defined
and used in a CAPSULE. There are five constructs, which indicate the various
possible conditions:

dec
used
dec_def
dec used
dec.def used

USAGEs are used to construct TOKEXTERNs and TAGEXTERNs.

2.17 UNIT

A value of SORT UNIT gathers together a number of TOKDECs, TAGDECs,
TOKDEFs and TAGDEFs. It places all the TOKDEFs and TAGDEFs in the scope
of all the TOKDECs and TAGDECs, enabling them to refer to one another as well
as to program fragments and values not defined in the UNIT, but expected to be
linked in from without.

There are three constructs:

2.17.1 make simpleunit

tok: TOKEN,
tokdecs: ('li=l w TOKDECi)_OPTION,

tagdecs: (Ii= l y TAGDECi)_OPTION,

tokdefs: (Ili=lx TOKDEFi)_OPTION,

tagdefs: (rli=l z TAGDEFi)_OPTION

-> UNIT

tokdecs and tagdecs provide the declarations of TOKENs and TAGs. All these
TOKENs and TAGs are in scpe in all the tokdefs and tagdefs, which are the
definitions of TOKENs and TAGs.

(The TOKEN tok does not relate to any of the TOKENs defined or declared in the
UNIT: it serves to identify the UNIT and may be used for diagnostic purposes.)

77

I

TDF: specification of subset to support ANSI C, C++ etc.

2.17.2 make comp unit

units: lil xUNIT i (i>1)

-> UNIT

A new UNIT is constructed which declares and defines all the program fragments
and values which the members of units declare and define. There will be no SORT or
SHAPE mismatches - ie. in the case of TOKENs the SORTs will be the same, and
in the case of TAGs the SHAPEs will be the same.

make_compunit is used by the TDF Builder in the course of constructing a new
consolidated CAPSULE. It is not likely to be needed by producer writers, but it
nevertieless forms part of the TDF Specification so that the action of the TDF
Builder can be represented as a straightforward TDF-to-TDF transformation.

2.17.3 add-linkage

unit: UNIT,

toklinks: (Fl j= I x TOKLINK j)_OPTION,

taglinks: (fI,= 1 Y TAGLINKi)_OPTION

-> UNIT

A new UNIT is constructed from which the program fragments and values declared
in unit are made visible externally under the names indicated in toklinks and taglinks.
The internal names specified in tokhnks and taglinks must be ones declared in unit:
otherwise the effect is undefined.

(Although toklinks and taglinks are optionally supplied, one or other will be supplied.
Otherwise, the use of add-linkage would be redundant.)

As with make compunit, addlinkage is not likely to be needed by producer writers.
It is usea by the TDF Builder to reconcile internal names in the course of
constructing a new consolidated CAPSULE. (§ 1.8.1 gives the background to this.)

2.18 TOKDEC

A value of SORT TOKDEC declares a TOKEN and is for incorporation into a
UNIT. There is one construct:

78

TDF: specification of subset to support ANSI C, C++ etc.

2.18.1 rnake-tokdec

tok: TOKEN,

arg..sorts: (fi=lfn SORTNAME,)_OPTION,
ressort: SORTNAME

-> TOKDEC

A TOKDEC announcing that the TOKEN tok identifies a fragment of TDF of SORT
res sort is constructed. If arg.sorts is supplied, the fragment of TDF will be
parameterised by n argument fragments of TDF whose SORTs are given by argsorts.

2.19 SORTNAME

A value of SORT SORTNAME denotes a SORT. SORTNAMEs find application in
maketokdec, which constructs the declaration of a TOKEN and needs to state what
the SORTs of the TOKEN's arguments and result are.

There are 25 constructs - one corresponding to each SORT:

shape-sort tokexternsort
exp sort tagexternsort
nat sort usage-sort
signed nat-sort unit sort
varietysort tokdec sort
floating varietysort sortname sort
tag sort tagdec sort
labelsort tokdef sort
ntest-sort tagdef sort
stringsort tolmink sor:
bool.sort taglin, sort
error treatment sort token-sort
capsule sort

2.20 TAGDEC

A value of SORT TAGDEC declares a TAG and is for incorporation into a UNIT.
There are two constructs:

79

TDF: specification of subset to support ANSI C, C++ etc.

2.20.1 makeidtagdec

t: TAG,

s: SHAPE

-> TAGDEC

A TAGDEC announcing that the TAG I identifies an EX? of SHAPE s is constructed. It
is not capable of being assigned to.

2.20.2 make var.tagdec

t: TAG,
s: SHAPE

-> TAGDEC

A TAGDEC announcing that the TAG t identifies a value of SHAPE POINTER(s) is
constructed. Being a POINTER, it is capable of being assigned to.

2.21 TOKDEF

A value of SORT TOKDEF gives the definition of a TOKEN, for incorporation into
a UNIT. There is one construct:

2.21.1 make tokdef

tok: TOKEN,
toks: (i= Ix TOKEN)_OPTION,
body: S { S may be any SORT)

-> TOKDEF

A TOKDEF is constructed which defines the TOKEN tok to stand for the fragment of
TDF, body, which may be of any SORT. If toks is supplied, then when the TOKEN tok
comes to be applied, occurrences in body of the TOKENs contained in toks will be
taken to stand for the x arguments provided.

2.22 TAGDEF

A value of SORT TAGDEF gives the definition of a TAG, for incorporation into a
UNIT. There is one construct:

80

TDF: specification of subset to support ANSI C, C++ etc.

2.22.1 make-tagdef

tag: TAG,

exp: EXP X

-> TAGDEF

A TAGDEF is constructed which defines the TAG tag to stand for the value delivered
by exp, or a POINTER to the value delivered by exp, depending on whether tag was
introduced by makeidtagdec or makevar-tagdec.

exp will be a constant evaluable at load-time.

2.23 TOKLINK

A value of SORT TOKLINK expresses the connection between two TOKENs.

There is only one construct:

2.23.1 make toklink

internal: TOKEN,
external: TOKEN

-> TOKLINK

A TOKLINK is constructed which defines the program fragment declared inside a
UNIT as internal to be available to other UNITs in the same CAPSULE under the
name exterr, al.

TOKLINKs are normally constructed by the TDF Builder in the course of resolving
name clashes and sharings when constructing a composite CAPSULE. They are not
likely to be needed by producer writers.

2.24 TAGLINK

A value of SORT TAGLINK expresses the connection between two TAGs. There is
only one construct:

81

TDF: specification of subset to support ANSI C, C++ etc.

2.24.1 make.taglink

internal: TAG,

external: TAG

-> TAGLINK

A TAGLINK is constructed which defines the value declared inside a UNIT as internal
to be available to other UNITs in the same CAPSULE under the name external.

TAGLINKs are normally constructed by the TDF Builder in the course of resolving
name clashes and sharings when constructing a composite CAPSULE. They are not
likely to be needed by producer writers.

2.25 TOKEN

A value of SORT TOKEN is an identifier which stands for a program fragment. It is
a static non-negative number of unbounded size.
In discussion it is often qualified with the SORT of the program fragment for which

it stands, as in:

TOKEN EXP INTEGER(0,255)

... describing a TOKEN which stands for an EXF INTEGER(0,255).

A TOKDEF defines the program fragment for which a TOKEN stands.

The construct applytoken substitutes that program fragment for the TOKEN.

2.25.1 apply token

token: TOKEN,
arguments: (rli=l n Si)_OPTION { n > 0) (Si may be any SORT)

-> R

token will be the subject of a TOKDEC in the UNJT in which this construct occurs,
declaring it to take n arguments of SORTs Si and delivering a value of SORT R.

The program fragment for which token stands is substituted into the TDF program in
place of the applytoken construct. It may be parameterised by arguments. If arguments
are supplied, they will be of the SORTs specified in token's TOKDEC.

It should be emphasised that the substitution .3pecified by applytoken is an action

82

TDF: specification of subset to support ANSI C, C++ etc.

performed on program at translate-time. It is not a run-time action. The use of
TOKENs is described fully in § 1.5.

83

TDF: specification of subset to support ANSI C, C++ etc.

3 Glossary

This glossary gives a quick explanation of some key TDF terms and references to
where more detailed accounts can be found elsewhere in this document.

Architecture Neutrality
Program is architecture neutral if it will run consistently on a variety of target
architectures. (See § 1.7.)

BOTTOM
BOTTOM is the SHAPE of pieces of program which do not terminate normally. For
instance, the SHAPE of goto(..,..) is BOTTOM. (See §2.1.1.1.)

CAPSULE
A CAPSULE is an independent piece of TDF program which defines a number of
values and program fragments and makes some of them available for linking. (See
§ 1.8.)

EXP
An EXP is a fragment of TDF program which will deiiver a value when the program
is run. It corresponds to expressions in high-level programminc languages. (See
§2.2.)

Installer
An Installer is a piece of software which manages the installation of a piece of TDF
program on a user's machine. If the TDF program being installed needs to be merged
with local, target-dependent software, the TDF Installer will use the TDF Builder to
do this. It will then use the Translator to convert the TDF to machine code and then
invoke the system linker to produce an executable image. (See §1.1.)

Lifetime
A pointer's lifetime is that zone of program over which an attempt to read its
contents is meaningful. (See §2.2.4.18.)

NOF
NOFs (pronounced 'en-of) are arrays of fixed size. (See §2.1.2.8.)

NTEST
NTESTs are used in generic testing constructs to indicate which of a range of
possible tests is to be applied - eg. equal, less_than etc. (See §2.9.)

OFFSET
OFFSET is the SHAPE of values which measure displacements in memory. The
:.,. .1. 4- 'MI X-rggish.. OFFSET Jr- ...

TNTEGE -- ~'' S, t a
.W. "t AV.U G,31 Jl II5Afl AIL. A *SO j tflUIAAQ)'LI A&GU% AIA -Jl. UI-M t

describe pointer arithmetic in a completely architecture neutral fashion. (See
§ 1.7.2.)

84

TDF: specification of subset to support ANSI C, C++ etc.

Producer
A Producer is a piece of software which generates TDF program, typically by
compiling from a high-level programming language. (See § 1. 1.)

SHAPE
SHAPEs are TDF's analogues of programming languages' types. Unlike types,
however, they give only as much information about values as is necessary to
describe their memory requirements in an architecture neutral fashion. (See §2.1.)

Sharing
Two pointers share if the spaces to which they point overlap. (See §2.2.4.1.1.)

SORT
SORTs are TDF's analogues of programming languages' syntactic classes, such as
identifiers, types, labels etc. (See § 1.3.2.)

TAG
A TDF TAG corresponds to a programming language identifier Unlike an identifier,
however, it gives no mnemonic information. (See Binding: Discussion .)

TAGEXTERNs and TOKEXTERNs
TAGEXTERNs and TOKEXTERNs set up associations between the names of TDF
values and program fragments - TAGs and TOKENs - and strings. This assists in the
merging of separate pieces of TDF and in system linking. (See §2.15 and §2.14.)

TDF Builder
The TDF Builder is a program written specially to support TDF. It merges separate
CAPSULEs together. It is typically used to merge a target-independent CAPSULE
supplied by a vendor, with a target-dependent CAPSULE on the user's machine
before translation. (See §1.8.1.)

TOKENs and Tokenisation
Tokenisation is similar to macro substitution: TOKENs stand for pieces of TDF
program. But the fact that TOKENs can substituted at any point in the progress from
TDF on the developer's hardware to mahine code on the user's hardware makes
them a powerful mechanism for achieving architecture neutrality, code compression
and optimisation. (See §1.5 and §1.8.)

TOP
TOP is the SHAPE of pieces of program which do not deliver any useful value. For
instance, the SHAPE of integertrest(...........) is TOP: it carries out a test which may
result in a jump to another program location or terminate normally, but delivering no
useful value. (See §2.1.1.2.)

Translator
A Translator is a piece of software which translates TDF program into a particular
architecture's machine code. (See § 1.1.)

85

TDF: specification of subset to support ANSI C, C++ etc.

TUPLE
TUPLEs are analogous to 'struct's in ANSI C. (See §2.1.2.4.)

UNIT
A UNIT is a collection of declarations and definitions of values and program
fragments. A CAPSULE will contain one or more UNITs. (See §2.17.)

86

A

abs 2.2.2.12
add linkage 2.17.3
add to_ptr 2.2.4.2
addto.tuple 2.2.9.3
Architecture Neutral Memory Allocation through SHAPEs 1.7.1
and 2.2.8.5
apply current_proc 2.2.5.10
apply.proc 2.2.5.9
applytoken 2.25.1
array elementoffset 2.2.7.1
assign 2.2.4.6
assign to volatile 2.2.4.10

B

Binding: Discussion 2.2.1.4
BIT 2.1.1.3
bits to integer 2.2.2.19
BOOL 2.11
BOTTOM 2.1.1.1
The Content of CAPSULEs and the TDF Builder 1.8.1

C

CAPSULE 2.13
TDF CAPSULEs and Linking 1.8
The Content of CAPSULEs and the TDF Builder 1.8.1
case 2.2.6.4
changefloating variety 2.2.3.8
changevar 2.2.2.14
Character Sets: Discussion 2.2.2.25
Circular SHAPEs 2.1.2.12
clearshape 2.2.10.2
coerceptr to initial-segment 2.2.4.9
concat.nof 2.2.8.4
conditional 2.2.6.5
Constants: Discussion 2.2.10.5
Describing Program Construction 1.6.2
contents 2.2.4.8
contents-of volatile 2.2.4.11
Number Conversion: Discussion 2.2.2.13
current env 2.2.5.12

D

Declarations and Naming 2.2.1
divl 2.2.2.6
div2 2.2.2.7
div reml 2.2.2.20
div rem2 2.2.2.21
Kinds of Division: Discussion 2.2.2.5
Dynamic Values 1.3.1

E

ENV SHAPEs 2.1.2.10
ERROR-TREATMENT 2.12
exact-divide 2.2.2.10
EXP 2.2
expcond 2.2.10.4

F

field 2.2.9.4
float 2.2.3.7
Floating Point SHAPEs 2.1.2.2
Floating Point Values 2.2.3
floating div 2.2.3.5
floatingminus 2.2.3.3
floating_mult 2.2.3.4
floatingnegate 2.2.3.6
floatingplus 2.2.3.2
floatingtest 2.2.3.9
floating test i 2.2.3.10
FLOATING VARIETY 2.6
floatingvariety_cond 2.6.1
Recommendations about FLOATING VARIETYs 2.1.2.2.1

G

Glossary 3
goto 2.2.6.8
goto-nl 2.2.6.10

1

Identification of Values 1.4
identify 2.2.1.1
Ignore 2.12.2

Impossible 2.!2.1
Initial Segments: Discussion 2.2.4.7
INTEGER SHAPEs 2.1.2.1
Recommendations about Integer VARIETYs 2.1.2.1.1
integer test 2.2.2.22
integer.test 1 2.2.2.23
integer-to.bits 2.2.2.24
Integers and Arithmetic 2.2.2

J

Jumping with Values: Discussion 2.2.6.3

L

LABEL 2.8
LABEL-VALUE SHAPEs 2.1.2.11
labelled 2.2.6.7
Availability of LABELs: Discussion 2.2.6.2
Lifetimes: Discussion 2.2.4.18
TDF CAPSULEs and Linking 1.8

M

make capsule 2.13.1
make-compunit 2.17.2
make-false 2.2.10.6
make floating 2.2.3.1
make.id tagdec 2.20.1
make int 2.2.2.1
make label value 2.2.6.9
make nof 2.2.8.1
make-null proc 2.2.5.3
makeparam pack 2.2.9.2
make.proc 2.2.5.2
make simple-unit 2.17.1
make string 2.2.10.3
make tagextern 2.15.1
make tagdef 2.22.1
maketaglink 2.24.1
make tok extern 2.14.1
make tokdec 2.18.1
make tokdef 2.21.1
make toklink 2.23.1
make true 2.2.10.7
make.tuple 2.2.9.1
make value 2.2.10.1

nake..var-tagdec 2.20.2
maxint 2.4.1
Architecture Neutral Memory Allocation through SHAPEs 1.7.1
minint 2.4.2
minus 2.2.2.3
mod 2.2.2.8
move some 2.2.4.12
mult 2.2.2.4

N

ncopies 2.2.8.2
Declarations and Naming 2.2.1
NAT 2.3
negate 2.2.2.11
Architecture Neutral Memory Allocation through SHAPEs 1.7.1
Architecture Neutral Pointer Arithmetic 1.7.2
TDF: Architecture Neutrality 1.7
NOF SHAPEs 2.1.2.8
NOFs and SOMEs 2.2.8
not 2.2.8.8
NTEST 2.9
Null POINTERs 2.2.4.1.2
Number Conversion: Discussion 2.2.2.13

0

obtainnltag 2.2.5.13
obtain tag 2.2.1.3
OFFSET SHAPEs 2.1.2.7
offset add 2.2.7.3
offset div 2.2.7.6
offset mult 2.2.7.5
offset negate 2.2.7.7
offset subtract 2.2.7.4
offset test 2.2.7.8
offset test i 2.2.7.9
OFFSETs 2.2.7
or 2.2.8.6
Original POINTERs 2.2.4.1.3

P

pad 2.2.9.5
PARAM PACK SHAPEs 2.1.2.5
TUPLEs, PARAM PACKs and UNIONs 2.2.9
plus 2.2.2.2

Architecture Neutral Pointer Arithmetic 1.7.2
POINTER SHAPEs 2.1.2.3
pointer-test 2.2.4.13
pointer testi 2.2.4.14
Null POINTERs 2.2.4.1.2
POINTERs 2.2.4
Original POINTERs 2.2.4.1.3
POINTERs: Discussion 2.2.4.1
Primitive SHAPEs 2.1.1
PROC 2.1.1.4
proc eq 2.2.5.6
proc eq.i 2.2.5.8
proc is.null 2.2.5.4
procneq 2.2.5.7
proc notnull 2.2.5.5
Procedures 2.2.5
Procedures: Discussion 2.2.5.1
Describing Program Construction 1.6.2
Program Structure and Flow of Control 2.2.6
ptr.field 2.2.4.4
ptr is null 2.2.4.16
ptrnot.null 2.2.4.17
ptr.unpad 2.2.4.5

R

rem2 2.2.2.9
repeat 2.2.6.6
return 2.2.5.11
round 2.2.2.17

S

Initial Segments: Discussion 2.2.4.7
sequence 2.2.6.1
SHAPE 2.1
SHAPE Constructors 2.1.2
SHAPE- and SORT-correctness 1.3.4
Primitive SHAPEs 2.1.1
Sharing 2.2.4.1.1
shiftleft 2.2.2.15
shift right 2.2.2.16
SIGNED NAT 2.4
SOME SPAPEs 2.1.2.9
NOFs ajid SOMEs 2.2.8
SHAPE- and SORT-correctness 1.3.4
SORTNAME 2.19

-i

Specifying Translator Behaviour 1.6.1
Static Values 1.3.2
STRING 2.10
Program Structure and Flow of Control 2.2.6
subtract-fromptr 2.2.4.3
subtract_ptrs 2.2.4.15

T

TAG 2.7
TAGDEC 2.20
TAGDEF 2.22
TAGEXTERN 2.15
TAGLINK 2.24
The Content of CAPSULEs and the TDF Builder 1.8.1
TDF CAPSULEs and Linking 1.8
Values within a TDF System 1.3
TDF Terminology 1.6
TDF: Architecture Neutrality 1.7
TDF: Level of Definition 1.2
TDF: Scenario of Use 1.1
TOKDEC 2.18
TOKDEF 2.21
TOKEN 2.25
Tokenisation 1.5
TOKEXTERN 2.14
TOKLINK 2.23
TOP 2.1.1.2
Specifying Translator Behaviour 1.6.1
trim nof 2.2.8.3
truncate 2.2.2.18
TUPLE SHAPEs 2.1.2.4
tuple element offset 2.2.7.2
TUPLEs, PARAMPACKs and UNIONs 2.2.9

U

UNION SHAPEs 2.1.2.6
TUPLEs, PARAM_PACKs and UNIONs 2.2.9
UNIT 2.17
unpad 2.2.9.6
USAGE 2.16

V

Values within a TDF System 1.3
variable 2.2.1.2

VARIETY 2.5
variety cond 2.5.1
Recommnendations about Integer VARIETYs 2.1.2.1.1

x
xor 2.2.8.7

REPORT DOCUMENTATION PAGE oiRIC Reference Numb*er (if known)...........................

Ovl secrity asificationf shoet UNCLASSIFIED...
(As far as possible this sheet #,1ov~d oontalr only uncd& sflled information. i t Is necessary to enter dwMifld Information, the fled concered
must be marked to indicate the classification .9 (FA), (c) or (s).
Originators Referenoe/Repm-t No. MnhYa

REPORT 91014 MY19
Originators Nam and Location

ASRE, St Andrews Road
Malvem, Worcs WR14 3PS

Monftor'.ng Agency Name and Location

Title

TDF: SPECIFICATION OF SUBSET TO SUPPOR1T ANSIC, C++, FORTRAN 77,
COBOL AND PASCAL

Report secrity Classificabion iteClassification (U, FR, C or S)
UNCLASSIFIED U

Foreign Language Tite (in the case of translations)

Conference Details

Abstract

TDF is an intermediate format for distributing software applications devoloped by the United Kingdom's
Defence Research Agency, Electronics Division at RSRE, Malvern. Report No 91005 gave an account
of the whole of TOF. The present report updates the account of the subset of TDF which supports ANSI C,
C++, FORTRAN 77, COBOL and Pascal, described in 91005 as TDF Level 0.

The Introduction gives an overview of the TDF concept and sets the scene for the Definition. This
specifies each of the constructs which make up the subset of TDF described here. A Glossary gives a
quick explanation of some key TDF terms.

Abstract Classification (U,Fl,C or S)

U

Descriptors

Distribution statement (Enter any limiftations on the distribution of the docuiment)

UNLIMITED
a5m"

